
[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 1:
Introduction and Software
Lifecycle Models
Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

About this course

Software assurance challenges

Foundations for software assurance

Software assurance guiding principles

Outline

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Learning Outcomes

After completing this course, students will be able to
• Understand lifecycle models and processes for newly

developed software systems
• Understand software engineering and security lifecycle models

and processes for the development of a software system
• Understand assurance methods and techniques for typical

lifecycle phases
• Elicit and analyze requirements for assured software
• Apply UML, analyze software behaviors
• Perform verification and validation

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Topics

Security models and methods in the areas of
• lifecycle process models
• risk management
• requirements engineering
• architecture and design
• verification and validation

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Prerequisites and Co-requisite

Prerequisite: Computer Science II
Co-requisite: Computer Science III

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Educational Activities

Class will be lecture and discussion
Readings from textbook, papers, reports
Homework assignments
Project including selected software development activities

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Text(s) and Key References
Allen, Julia H., Barnum, Sean, Ellison, Robert J., McGraw, Gary, &
Mead, Nancy R. Software Security Engineering: A Guide for Project
Managers. Addison Wesley Professional, 2008. (Available from
InformIT and Amazon.com)
Mead, Nancy R., Woody, Carol C., Cyber Security Engineering: A
Practical Approach for Systems and Software Assurance. Addison
Wesley Professional, 2017. (Available from InformIT and
Amazon.com)
U.S. Department of Homeland Security. Build Security In Website
Additional readings and videos, etc. as needed

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Grading Criteria

• 45% individual assignments
• 5% class participation
• 50% team project

Grading will take into consideration completeness, creativity, deep
insights, and thinking outside the box. Sources must be cited.
Material lifted from another source must be in quotes.
Assignments are to be turned in BEFORE class on the day they
are due. Assignments not turned in on time will lose 10% for each
day late.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 10

Software Assurance Challenges

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scenario – Drone Virus Attack

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Drone Scenario – Key Challenges

A: Code scanning does
not address early
lifecycle problems

B: Detection occurs late.
Recovery is expensive.

C: Protection like firewalls won’t stop malware
that comes from other trusted systems.

D : We need to measure the effectiveness of
early lifecycle techniques to get them into
practice in DoD.

D

D

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Is There Really a COTS Security Problem?

Wasted time
Wasted money
Still no tool!

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

What examples of software security problems have you heard of
lately?

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Current Challenge for Software Assurance

Material
Solution
Analysis

Technology
Development

Engineering and
Manufacturing
Development

Production and
Deployment

Operations and
Support

A B C

Material
Development
Decision

Post-
CDR A

FRP
Decision
Review

Pre-Systems Acquisition Systems Acquisition Sustainment

Software Patch
Cycle

Certification and
Authorization to OperateDevelopment Lifecycle

Patch & Pray

47,202 known vulnerabilities as of 9/17/11

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Operational Mission Reality – Systems of Systems

Material
Solution
Analysis

Technology
Development

Engineering and
Manufacturing
Development

Production and
Deployment

Operations and
Support

A B C

Material
Development
Decision

Post-
CDR A

FRP
Decision
Review

Pre-Systems Acquisition Systems Acquisition Sustainment

Software Patch
Cycle

Certification and
Authorization to Operate

Material
Solution
Analysis

Technology
Development

Engineering and
Manufacturing
Development

Production and
Deployment

Operations and
Support

A B C

Material
Development
Decision

Post-
CDR A

FRP
Decision
Review

Pre-Systems Acquisition Systems Acquisition Sustainment

Software Patch
Cycle

Certification and
Authorization to Operate

Material
Solution
Analysis

Technology
Development

Engineering and
Manufacturing
Development

Production and
Deployment

Operations and
Support

A B C

Material
Development
Decision

Post-
CDR A

FRP
Decision
Review

Pre-Systems Acquisition Systems Acquisition Sustainment

Software Patch
Cycle

Certification and
Authorization to Operate

Development 1

Development 2

Development 3

Operational
Mission Assure and

Verify
Mission
Security

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

What is Software Assurance?

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Definition: Software Assurance

Software assurance (Software Assurance Curriculum Project)
An application of technologies and processes to achieve a
required level of confidence that software systems and services
function in the intended manner, are free from accidental or
intentional vulnerabilities, provide security capabilities
appropriate to the threat environment, and recover from
intrusions and failures.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 19

Foundations for Software Assurance

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Information/IT Security Point of View

Typically dealing with an organization’s infrastructure provider, the
management chain, and the CIO
End objective is to provide a functional, available, secure
operational infrastructure and applications for all users
Information protection and privacy are demanding increasing
attention (regulatory, marketplace pressure)
Software/application security may or may not be on the radar
screen

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Security Point of View -1

Dealing primarily with software/application developers and their
management chain

• in-house, service provider, purchased software

End objective is to produce working systems and applications, on
schedule, on budget

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Security Point of View -2

Security typically addressed (if at all):
• During coding and testing
• During operations/production as an “after the fact” add-on;

reactive
• For COTS, open source, or third party software, as a

provider/vendor responsibility
• What’s wrong with the above approach?

COTS: Commercial Off The Shelf

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Why Software Security? -1

Developed nations’ economies and defense depend, in large part,
on the reliable execution of software.
Software is ubiquitous, affecting all aspects of our personal and
professional lives.
Software vulnerabilities are equally ubiquitous, jeopardizing

• Personal identities
• Intellectual property
• Consumer trust
• Business services, operations, and continuity
• Critical infrastructures and government

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Why Software Security? -2

Most successful attacks result from
• Targeting and exploiting known, non-patched software

vulnerabilities
• Insecure software configurations

Many of these are introduced during software design and
development.
Increasing trend of assembling systems from purchased parts
means getting software acquisition right with respect to security.
Refer to Polydys and Wisseman. “Software Assurance in
Acquisition: Mitigating Risks to the Enterprise.” 2007.

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is Software Security?

Software security is NOT
• Firewalls, intrusion detection, encryption, or tools that protect

the environment in which the software operates
Software security IS

• Engineering software so that it continues to function under
attack

• The ability of software to recognize, resist, tolerate, and recover
from events that threaten it

The goal: Better, defect-free software that can function more
robustly in its operational production environment

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Perspectives

https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Needs to Be Trusted

Exploitation of software defects is estimated to cost the U.S.
economy $60 billion annually.
Software development and sustainment activities must follow
proper practices, but there is no authoritative point of reference.
The U.S. Department of Homeland Security (DHS) created a group
to define a common body of knowledge (CBK) for secure software
assurance.

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Definition: Software Assurance (recap)

Software assurance (Software Assurance Curriculum Project)
• Application of technologies and processes to achieve a

required level of confidence that software systems and services
function in the intended manner, are free from accidental or
intentional vulnerabilities, provide security capabilities
appropriate to the threat environment, and recover from
intrusions and failures.

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Addressing the Gaps

DHS enlisted the SEI’s CERT Division to coordinate the
development of a curriculum for a Master of Software Assurance
(MSwA) degree program. (what and how)
http://www.cert.org/mswa/

• Developed a curriculum body of knowledge and associated
outcomes

• Identified the need for a coherent set of guiding principles for
secure software assurance

The SEI’s CERT Division and the Software Engineering Program at
Oxford University, UK collaborated to build a set of principles.
(why)

http://www.cert.org/mswa/

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 30

Software Assurance Guiding
Principles

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Principles -1

Saltzer and Schroeder* defined security as “techniques that control
who may use or modify the computer or the information contained
in it”.
They described the three main categories of concern:

- Confidentiality
- Integrity
- Availability

* Reference: Saltzer and Schroeder, “The Protection of Information in Computer Systems.”
Communications of the ACM, 1974.

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Principles -2

Economy of mechanism: Keep the design as simple and small as
possible.
Fail-safe defaults: Base access decisions on permission rather
than exclusion.
Complete mediation: Every access to every object must be
checked for authority.
Open design: The design should not be secret. The mechanisms
should not depend on the ignorance of potential attackers, but
rather on the possession of specific, and more easily protected,
keys or passwords.

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Principles -3

Separation of privilege: Where feasible, a protection mechanism
that requires two keys to unlock it is more robust and flexible than
one that allows access to the presenter of only a single key.
Least privilege: Every program and every user of the system
should operate using the least set of privileges necessary to
complete the job.
Least common mechanism: Minimize the amount of mechanism
common to more than one user and depended on by all users.
Psychological acceptability: It is essential that the human interface
be designed for ease of use, so that users routinely and
automatically apply the protection mechanisms correctly.

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technology Environment in 1974

S360 in use from 1964-1978
S370 came on the market in 1972
COBOL and BAL programming languages
MVS operating system released in March 1974
Patches were carefully tested to minimize operational disruption

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Changes Since 1974

Internet
Morris worm – November 2, 1988
50,000+ software vulnerabilities and exposures (CVE)
Java, C++, C#
Mobile computing
Cloud
Etc.

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Principles of Software Assurance

A set of principles to guide learners in understanding the WHY of
software assurance

37Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The perception of risk drives assurance decisions.
• Assurance implementation choices (policies, practices, tools,

restrictions) are based on the perception of threat and the
impact should that threat be realized.

• Perceptions are based on successful attacks.
- The current state of assurance is largely reactive.
- More successful organizations react and recover faster, learn from

the reactive responses or others, and are more vigilant in anticipating
and detecting attacks.

• Misperceptions are failures to recognize threats and impacts –
“how could it happen to us?” or “it could not happen here!”

Risk

38Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Highly connected systems require alignment of risk across all
stakeholders and systems otherwise critical threats will be
unaddressed (missed, ignored) at different points in the
interactions.
• There are costs to addressing assurance which must be

balanced against the impact of the risk.
• Risk must also be balanced with other opportunities/needs

(performance, reliability, usability, etc.).
• Interactions occur at many technology levels (network, security

appliances, architecture, applications, data storage, etc.) and
are supported by a wide range of roles.

Interactions

39Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Your assurance depends on other people’s assurance
decisions and the level of trust you place on these
dependencies.
• Each dependency represents a risk.
• Dependency decisions should be based on a realistic

assessment of the threats, impacts, and opportunities
represented by an interaction.

• Dependencies are not static and trust relationships should be
reviewed to identify changes that warrant reconsideration.

• Using many standardized pieces to build technology applications
and infrastructure increases the dependency on other’s
assurance decisions.

Trusted Dependencies

40Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

There are no perfect protections against attacks.
There exists a broad community of attackers with growing
technology capabilities able to compromise the confidentiality,
integrity, and availability of any and all of your technology assets
and the attacker profile is constantly changing.
• The attacker uses technology, processes, standards, and

practices to craft a compromise (socio-technical responses).
• Attacks are crafted to take advantage of the ways we normally

use technology or designed to contrive exceptional situations
where defenses are circumvented

Attacker

41Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assurance requires knowledge of what can go wrong and
effective risk coordination among all technology participants
and their governing bodies.
• Protection must be applied broadly across the people,

processes, and technology because the attacker will take
advantage of all possible entry points.

• Authority and responsibility must be clearly established at an
appropriate level in the organization to ensure effective
participation and coverage.

• All participants must have appropriate competencies for
software assurance.

Coordination and Education

42Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The capabilities to respond to a threat must be designed into
the system and the threat is always changing.
Assurance implementation must represent a balance among
governance, construction, and operation and is highly sensitive to
changes in each of these areas.
• Engineering challenge: Assurance cannot be added later; you

must plan and build to the level of acceptable assurance that
you need.

• Continuous monitoring must be part of the planned response.
• No one has resources to redesign systems every time the threat

changes.

Well-Planned and Dynamic

43Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A means to measure and monitor assurance must be built in.

If you cannot measure it, you cannot manage it.
• All elements of the socio-technical environment must tie together

(practices, processes, procedures, products, etc.) and
measurements must be consistent.

• Effective measurement is well supported by sound engineering
and organizational principles.
- Well formed and consistently applied processes are critical to ensure

an appropriate measurable response.
• Measurement must be multi-faceted.

Measurable

44Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Class Assignment One

Surf the web and find four different actual examples of successful
intrusion:

• One that resulted from human error (e.g., such as giving out a
password or downloading a virus)

• One that resulted from a system configuration error
• One that resulted from software providing an intrusion

opportunity because of a flawed development process
• One that resulted from a vulnerability in a COTS product

Describe how each of these attacks could have been avoided.
• Consider changes in policy, configuration management,

software development practice, and COTS acquisition
practices.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 45

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 2:
Software Development Lifecycles
(Developed by David Root)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

Software development lifecycles (SDLCs)
• Defined
• Difference from “process”
• Compare to development variables
• Common lifecycles

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is a Software Lifecycle?

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is a Lifecycle?

Webster’s Dictionary (1892):
“The series of stages in form and functional activity
through which an organism passes between
successive recurrences of a specified primary
stage.”

Reifer (1997): (product)
“Period of time that begins when a software product
is conceived and ends when the product is retired
from use.”

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is a Software Lifecycle?

The software lifecycle is the cradle to grave existence of a software
product or software intensive system.

• includes initial development, repairs, and enhancement, and
decommission

Management of the entire lifecycle of a software intensive system
requires a deeper knowledge than basic in-the-small development
intuition and experience.

developed by Tony Lattanze

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

More on Lifecycles

Lifecycle models attempt to generalize the software development
process into steps with associated activities and/or artifacts.

• They model how a project is planned, controlled, and monitored
from inception to completion.

Lifecycle models provide a starting point for defining what we will
do.
But, what is the end point of a project?

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

So…What Is a Process?

A process is a sequence of steps performed for a given purpose.
Webster’s:

“a series of actions or operations conducing to an end”
a series of actions that produce something or that lead to a

particular result

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process ≠ Lifecycle

Software process is not the same as lifecycle
models.

• process refers to the specific steps used in a specific
organization to build systems

• indicates the specific activities that must be undertaken
and artifacts that must be produced

• process definitions include more detail than provided
lifecycle models

Software processes are sometimes defined in the
context of a lifecycle model.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is Important?

What you call “it” isn’t important.

What stakeholders understand is important.

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Sample Lifecycles

Ad Hoc
Classic (waterfall)
Prototype
RAD

Incremental
Spiral
WinWin
V model
Chaos

Concurrent COTS 4th Gen

What about Agile?

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Be Very Careful Here

Is this just semantics?
Are there standard definitions?
How should one approach this with a new project?
Remember, we tend to think linearly, sequentially. Is this a
problem?

Define, communicate, define, communicate...

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Remember This When Looking at SDLCs

Scope

QualityBudget

Time

Expectation

Space

Technology

PeopleProcess

Solution

Space

f(x)

f(x) = f(Planning, Process, People, Product, ?…..)

Customer’s View Developer’s View

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

When Looking At Projects

You need to ask,
“What SDLC would define my project best?”

(The project drives the lifecycle, not the other way around.)

What criteria are important for the project?

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Criteria You Need to Consider

Stakeholders
• Who?
• Backgrounds, domain expertise
• Commitment to project

Environments
• Business / market
• Cultures

Moral, legal constraints

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Ad Hoc “Hobbyist”

Legacy
Code – Test – Code – Test………

• Becomes a mess, chuck it, start over

Design (high-level) – Code – Test – Code – Test…..
• (Reality was Code - Test – Code – Test – Document the

resulting design)

Lack of defined, formalized processes
Is this the same as “no process?”

Is this still viable for a project?

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Waterfall Model -1

First proposed in 1970 by W.W. Royce
Development flows steadily through

• requirements analysis, design implementation, testing,
integration, and maintenance.

Royce advocated iterations of waterfalls adapting the results of the
precedent waterfall.

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Waterfall Model -2

Technology had some influence on the viability of the waterfall
model.

• slow code, compile, and debug cycles
Reflected the way that other engineering disciplines build things.
Formed the basis of the earliest software process frameworks.
Waterfall is still used today (but no one will admit it). It has a bad
reputation. Why?

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Waterfall (Linear) (Classic) Model Intent

Product Idea

Analysis

Design

Implementation

Testing Product Life

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Idea

More Code

Test Product Life

Prototype

A Common Misuse of the Rapid Prototype Model

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Are the Problems with the Prototype Lifecycle?

When would you use it?:

Weaknesses:

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Incremental Model
(One of the Most Misused Definitions)

The incremental model prescribes developing and delivering the
product in planned increments.

• The product is designed to be delivered in increments.
• Each increments provides (in theory) more functionality than

the previous increment.
Reality: Projects called “incremental” really do increments in
Waterfall phases….

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

However, the incremental model is used…

On almost all developments… (or the term “incremental” is used)
On anything done in pieces

• Agile – are these planned in advance?
• No knowing the next step until you do an increment

Be very careful to define what you mean when you say
“incremental.”
It is “iterative” but so are most….

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Incremental Model
(What Blocks Are Missing?)

These are sequences of what?

Design Code TestAnalysis

Design Code TestAnalysis

Design Code TestAnalysis

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Rapid Application Development (RAD)

Incremental
60-90 days per release
Information systems
4th generation techniques

Data
Modeling

Process
Modeling

Application
Generation Testing &

Turnover

Business
Modeling

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Spiral Model -1

The spiral model
• First defined by Barry Boehm
• Combines elements of

- Evolutionary, incremental, and prototyping models
• First model to explain

- Why iteration matters
- How iteration could be used effectively

• The term spiral refers to successive iterations outward from a
central starting point.

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Spiral Model -2

Concept development projects

New product development projects

Product enhancement projects

Product maintenance projects

Construction and release

Engineering

Risk analysis
Planning

Customer
communication

Project entry
point axis

Customer
evaluation

Roger S. Pressman, “Software Engineering, A Practitioners Approach”

Note

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Spiral Model -3

The goal is to
• identify risk
• focus on it early

In theory, risk is reduced in outer spirals as the product becomes
more refined.
Each spiral

• starts with design goals
• ends with the client reviewing the progress thus far and future

direction
• was originally prescribed to last up to two years

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

WINWIN Spiral

1. Identify
next-level
stakeholders

2. Identify stakeholders’
win conditions 3a. Reconcile win conditions

3b. Establish next-level objectives,
constraints and alternatives

4. Evaluate process and
product alternatives and
resolve risks

5. Define next level of
product and process,
including partitions

6. Validate product and
process definitions

7. Review and comment

Roger S. Pressman, Software Engineering, A Practitioners Approach

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

V Model -1

Often used in system engineering environments to represent the
system development lifecycle.

• summarizes the main steps taken to build systems, not
specifically software

• describes appropriate deliverables corresponding with each
step in the model

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

V Model -2

The left side of the V represents the specification stream where the
system specifications are defined.
The right side of the V represents the testing stream where the
system is being tested against the specifications defined on the left
side.
The bottom of the V—where the streams meet—represents the
development stream.

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Which of these do you use?

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

Need to define and understand SDLCs
Variables/criteria that impact selection

• Resources, time, scope, and quality
Advantages/disadvantages of each
Be careful of “easy” paths

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 34

Other. . .

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Chaos Model -1

Extends the spiral and waterfall model defined by L.B.S. Raccoon.
Espouses the notion that the lifecycle must address all levels of a
project, from the larger system to the individual lines of code.
The whole project, system, modules, functions and each line of
code must by defined, implemented, and integrated holistically.

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Chaos Model -2

Chaos Theory underlies the fundamental concepts of the Chaos
Model:

• Software projects are non-linear systems exhibiting random
motion (linear systems are rare in nature).

• Non-linear systems can be more than the sum of their parts.
- To characterize the behavior of a non-linear system, one needs

principles to study the system as a whole and not just its parts in
isolation (i.e., it is senseless to study architecture design in
isolation).

37Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Chaos Model -3

Chaos strategy resembles the way that programmers work toward
the end of a project:

• when they have a list of bugs to fix and features to create
• usually someone prioritizes the remaining tasks
• programmers fix bugs one at a time

Chaos strategy states that this is the only valid way to do the work.

38Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Components

COTS
Cycle

• Identify possible ones
• Check library
• Use (if they exist)
• Build new ones (if they don’t)
• Put new ones in library

Problems with COTS?

39Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SEI Process Models for COTS

PECA
• Plan the evaluation – stakeholders, goals, constraints,

timeframe
• Establish criteria – measurable, not abstract
• Collect data based on criteria
• Analyze – careful of first fit compared to best fit

CURE
• COTS Usage Risk Evaluation

40Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Concurrent

Complementary Applications
• High Interdependence with Modules

State Charts
Triggers for Transition
Examples

• Client – Server
• OBUS

41Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Roger S. Pressman, Software Engineering,
A Practitioner’s Approach

Analysis activity

Represents a state of a
software engineered activity

Under
development

None

Awaiting
changes

Under
revision

Under
review

Baselined

Done

Concurrent Development Model

42Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Are These Different?

Different names for traditional?
Does it matter?
What do you as project managers need to take away from this?

43Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Current State of the Art

Iterative, cyclic development (or so stated)

Agile Processes?

Software is grown rather than birthed whole

Short cycles

Small teams

Component development

More integration vs new development?

44Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

When Looking at a New Project

DO NOT make your project fit a SDLC!!!

INSTEAD, find the right SDLC and tailor it to your
project (if it can be).

Your organization may drive this, but any lifecycle process
should be seen as a tool to assist development, not an end in and
of itself.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 45

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 3:
Project Processes
(Developed by Dan Shoemaker)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Planning Process – Purpose

To produce and communicate effective and workable project plans
This process

• Determines the scope of the project management and technical
activities

• Identifies process outputs, project tasks and deliverables
• Establishes schedules for project task conduct, including

achievement criteria
• Establishes required resources to accomplish project tasks.

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Planning Process – Results

From successful implementation
• The scope of the work for the project is defined.
• The feasibility of achieving the goals of the project with

available resources and constraints are evaluated.
• The tasks and resources necessary to complete the work are

sized and estimated.
• Interfaces between elements in the project, and with other

project and organizational units, are identified.
• Plans for the execution of the project are developed.
• Plans for the execution of the project are activated.

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Planning Process – Project Initiation

The manager shall establish the requirements of the project to be
undertaken, including identifying the project's objectives,
motivations and boundaries.
The manager shall establish feasibility of the project by checking
that resources are available, adequate, and appropriate and that
the timescales to completion are achievable.
As necessary, and by agreement of all parties concerned, the
requirements of the project may be modified at this point to achieve
the completion criteria.

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Planning Process – Project planning

The manager shall prepare the plans for execution of the project
containing descriptions of the associated activities and tasks and
identification of the software products.
These plans shall include, but are not limited to

• Schedules for the timely completion of tasks
• Estimation of effort
• Adequate resources needed to execute the tasks
• Allocation of tasks
• Assignment of responsibilities
• Quantification of risks associated with the tasks or the process itself
• Quality assurance measures to be employed throughout the project
• Costs associated with the process execution
• Provision of environment and infrastructure
• Definition and maintenance of a lifecycle model

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Planning Process – Project Activation

The manager shall obtain authorization for the project.
The manager shall submit requests for necessary resources to
perform the project.
The manager shall initiate the implementation of the project plan/s
to satisfy the objectives and criteria set, exercising control over the
project.

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Assessment and Control Process – Purpose

To determine the status of the project and ensure that the project
performs according to plans and schedules, and within projected
budgets, and that it satisfies technical objectives
This process includes

• Redirecting the project activities, as appropriate, to correct
identified deviations and variations from other project
management or technical processes
- Redirection may include re-planning as appropriate.

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Assessment and Control Process – Results

From successful implementation
• Progress of the project is monitored and reported.
• Interfaces between elements in the project, and with other

project and organizational units, are monitored.
• Actions to correct deviations from the plan and to prevent

recurrence of problems identified in the project are taken when
project targets are not achieved.

• Project objectives are achieved and recorded.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Assessment and Control Process –
Project Monitoring and Project Control

Project Monitoring
• The manager shall monitor the overall execution of the project,

providing both internal reporting of the project progress and
external reporting to the acquirer as defined in the contract.

Project control
• The manager shall investigate, analyze, and resolve the

problems discovered during the execution of the project. The
resolution of problems may result in changes to plans.
- It is the manager's responsibility to ensure the impact of any

changes is determined, controlled, and monitored. Problems and
their resolution shall be documented.

• The manager shall report, at agreed points, the progress of the
project, declaring adherence to the plans and resolving
instances of the lack of progress

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Project Assessment and Control Process –
Project assessment and Project closure

Project assessment
• The manager shall ensure that the software products and plans

are evaluated for satisfaction of requirements.
• The manager shall assess the evaluation results of the

software products, activities, and tasks completed during the
execution of the project for achievement of the objectives and
completion of the plans.

Project closure
• When all software products, activities, and tasks are completed,

the manager shall determine whether the project is complete,
taking into account the criteria as specified in the contract or as
part of organization's procedure.

- These results and records shall be archived in a suitable environment
as specified in the contract.

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decision Management Process

Selects the most beneficial course of project action where
alternatives exist

• This process responds to a request for a decision encountered
during the system lifecycle, whatever its nature or source, in
order to reach specified, desirable or optimized outcomes.
- Alternative actions are analyzed and a course of action selected

and directed.
• Decisions and their rationale are recorded to support future

decision-making.

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decision Management Process – Results

From successful implementation
• A decision-making strategy is defined.
• Alternative courses of action are defined.
• A preferred course of action is selected.
• The resolution, decision rationale and assumptions are

captured and reported.

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decision Management Process – Decision Planning

The project shall
• Define a decision-making strategy
• Involve relevant parties in the decision-making in order to draw

on experience and knowledge
• Identify the circumstances and need for a decision
• Promote learning from experience

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decision Management Process – Decision Analysis

The project shall
• Select and declare the decision-making strategy for each

decision situation
• Identify desired outcomes and measurable success criteria
• Evaluate the balance of consequences of alternative actions,

using the defined decision-making strategy, to arrive at an
optimization of, or an improvement in, an identified decision
situation

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decision Management Process – Decision Tracking

The project shall
• Record, track, evaluate and report decision outcomes to

confirm that problems have been effectively resolved, adverse
trends have been reversed and advantage has been taken of
opportunities

• Maintain records of problems and opportunities and their
disposition, as stipulated in agreements or organizational
procedures and in a manner that permits auditing and learning
from experience

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Management Process

A continuous process for systematically addressing risk throughout
the lifecycle of a system or software product or service
Can be applied to risks related to the acquisition, development,
maintenance or operation of a system

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Management Process – Results

From successful implementation
• The scope of risk management to be performed is determined.
• Appropriate risk management strategies are defined and.

Implemented.
• Risks are identified as they develop and during the conduct of the

project.
• Risks are analyzed, and the priority in which to apply resources to

treatment of these risks is determined.
• Risk measures are defined, applied, and assessed to determine

changes in the status of risk and the progress of the treatment
activities.

• Appropriate treatment is taken to correct or avoid the impact of risk
based on its priority, probability, and consequence or other defined
risk threshold.

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Management Process – Risk Management
Planning

Risk management policies describing the guidelines under which
risk management is to be performed shall be defined.
A description of the Risk Management Process to be implemented
shall be documented.
The parties responsible for performing risk management and their
roles and responsibilities shall be identified.
The responsible parties shall be provided with adequate resources
to perform the Risk Management Process.
A description of the process for evaluating and improving the Risk
Management Process shall be provided.

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Management Process – Risk Analysis

Risks shall be identified in the categories described in the risk
management context.
The probability of occurrence and consequences of each risk
identified shall be estimated.
Each risk shall be evaluated against its risk thresholds.
For each risk that is above its risk threshold, recommended
treatment strategies shall be defined and documented. Measures
indicating the effectiveness of the treatment alternatives shall also
be defined and documented.

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Management Process – Risk Treatment

Stakeholders shall be provided recommended alternatives for risk
treatment in risk action requests.
If the stakeholders determine that actions should be taken to make
a risk acceptable, then a risk treatment alternative shall be
implemented.
If the stakeholders accept a risk that exceeds its threshold, it shall
be considered a high priority and monitored continuously to
determine if any future risk treatment actions are necessary.
Once a risk treatment is selected, it shall receive the same

management actions as problems do, in accordance with the
assessment and control activities in subclause 6.3.2 of this
standard or ISO/IEC 15288:2008.

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Management Process – Risk Monitoring

All risks and the risk management context shall be continuously
monitored for changes.

• Risks whose states have changed shall undergo risk
evaluation.

Measures shall be implemented and monitored to evaluate the
effectiveness of risk treatments.
The project shall continuously monitor for new risks and sources
throughout its lifecycle.

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Management Process – Evaluation

Information shall be collected throughout the project’s lifecycle for
purposes of improving the Risk Management Process and
generating lessons learned.
The Risk Management Process shall be periodically reviewed for
its effectiveness and efficiency.
Information on the risks identified, their treatment, and the success
of the treatments shall be reviewed periodically for purposes of
identifying systemic project and organizational risks.

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management Process – Purpose
and Results
Purpose

• To establish and maintain the integrity of all identified outputs of
a project or process and make them available to concerned
parties

Results from successful implementation
• A configuration management strategy is defined.
• Items requiring configuration management are defined.
• Configuration baselines are established.
• Changes to items under configuration management are

controlled.
• The configuration of released items is controlled.
• The status of items under configuration management is made

available throughout the lifecycle.

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management Process – Planning
and Execution
Planning

• The project shall define a configuration management strategy.
• The project shall identify items that are subject to configuration

control.
Execution

• The project shall maintain information on configurations with an
appropriate level of integrity and security.

• The project shall ensure that changes to configuration
baselines are properly identified, recorded, evaluated,
approved, incorporated and verified.

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Information Management Process

Provides relevant, timely, complete, valid, or confidential
information to designated parties
This process

• Generates, collects, transforms, retains, retrieves, disseminates
and disposes of information

• Manages designated information, including technical, project,
organizational, agreement and user information

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Information Management Process – Results

From successful implementation
• Information to be managed is identified.
• The forms of the information representations are defined.
• Information is transformed and disposed of as required.
• The status of information is recorded.
• Information is current, complete and valid.
• Information is made available to designated parties.

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Information Management Process – Planning

The project shall
• Define the items of information that will be managed during the

system life cycle and, according to organizational policy or
legislation, maintained for a defined period beyond

• Designate authorities and responsibilities regarding the
origination, generation, capture, archiving and disposal of items
of information

• Define the rights, obligations and commitments regarding the
retention of, transmission of and access to information items

• Define the content, semantics, formats and medium for the
representation, retention, transmission and retrieval of
information

• Define information maintenance actions

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Information Management Process – Execution

The project shall
• Obtain the identified items of information
• Maintain information items and their storage records according

to integrity, security and privacy requirements
• Retrieve and distribute information to designated parties as

required by agreed schedules or defined circumstances
• Provide official documentation as required
• Archive designated information, in accordance with the audit,

knowledge retention and project closure purposes
• Dispose of unwanted, invalid or unverifiable information

according to organization policy, and security and privacy
requirements

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement Process

Collects, analyzes, and reports data relating to the products
developed and processes implemented within the unit
Supports effective management of the processes, and objectively
demonstrates the quality of the products

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement Process – Results

From successful implementation
• The information needs of technical and management

processes are identified.
• An appropriate set of measures, driven by the information

needs are identified and/or developed.
• Measurement activities are identified and planned.
• The required data are collected, stored, analyzed, and the

results interpreted.
• Information products are used to support decisions and provide

an objective basis for communication.
• The Measurement Process and measures are evaluated.
• Improvements are communicated to the Measurement Process

owner.

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement Process – Planning

The project shall
• Describe the characteristics of the organization that are

relevant to measurement
• Identify and prioritize the information needs
• Select and document measures that satisfy the information

needs
• Define data collection, analysis, and reporting procedures
• Define criteria for evaluating the information products and the

measurement process
• Review, approve, and provide resources for measurement

tasks
• Acquire and deploy supporting technologies

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement Process – Performance

The project shall
• integrate procedures for data generation, collection, analysis

and reporting into the relevant processes
• Collect, store, and verify data
• Analyze data and develop information products
• Document and communicate results to the measurement users

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement Process – Evaluation

The project shall
• Evaluate information products and the measurement process
• Identify and communicate potential improvements

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 35

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 4:
Process Frameworks
(Developed by David Root)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

Define Process/Method/Framework
PSP/TSP
Architecture-Centric Development Method (ACDM)
Discuss Agile concepts

• XP and Scrum
• Rational Unified Process (RUP)
• Agile Unified Process (AUP) and Open Unified Process (OUP)

How do you really use these processes?

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

In this lecture process and method are interchangeable. Should
they be?

Also, the assumption is that you have a starting framework.

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Defining Processes – A Review

When defining processes
• Be sure that you know why you are using/developing a

process.
• Ensure that processes are in line with business goals.
• Involve stakeholders: They should develop the process; you

should facilitate.
• Be sure that the granularity is appropriate for the

organization/program/project.

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Don’t Make This Too Hard

Define what you are/will be doing.
• What you need to do vs everything you might want to do

It does not have to be a book.
• Checklists can suffice; must be understandable and usable

Think of metrics.
• How will you know you did it?
• Data collection

Do you need to measure “how well?”
• Or just that you did it. You decide.

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Be Very Careful

If adopting a process framework then

DO SO.
Don’t immediately “tailor” the process.
Don’t just pick and choose specific parts of different frameworks.
More overhead costs aren’t necessarily bad.

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Painful Experience

If you use a process framework to establish or improve processes
• Understand and follow the spirit of the framework, not the blind

letter of the law.
• Use the framework as-is before you tailor it.
• Tailor, measure, tailor, measure...
• THINK about what you are doing.
• It’s better to start with more.

- Too easy to justify too little

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Methodology Wars
Ken Orr/Cutter Consortium

Question:
What is the difference between a bank robber and a
methodologist?

Answer:
You can negotiate with a bank robber.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Review: Remember Process ≠ Lifecycle

Software process is not the same as lifecycle models.
• Process refers to the specific steps used in a specific

organization to build systems.
• Process indicates the specific activities that must be

undertaken and artifacts that must be produced.
• Process definitions include more detail than provided lifecycle

models.
Software processes are sometimes defined in the context of a
lifecycle model.

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Definition

Benefits of Process Definition
• Being able to make changes (recipe)

Process Components
• Scripts
• Forms
• Standards
• Process improvement capability

Defining Phases in the Process (ETVX)
• Entry, Task, Validation and eXit

©Mel Rosso-Llopart 2013

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is a Method?

Requirements

System

Solution
Space

The Method

© David Root & Anthony J. Lattanze, 2008, all rights reserved

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Our Philosophy

There is no one method suitable for all problem domains.

All good methods are based on timeless principles like
abstraction and information hiding.

© David Root & Anthony J. Lattanze, 2008, all rights reserved

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Remember…

The only source of defects in software development is the human
element.
Processes are needed to

• Control the human variable
• Identify problem sources
• Make outcomes repeatable

But, can you have too much, or too little process? How would you
know?

© David Root & Anthony J. Lattanze, 2008, all rights reserved

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Why Would I Want To Use an Established
Process Framework?

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Myths and Abuses -1

Belief that any one model is the Silver Bullet
Mandating processes from above without involving process owners
Beginning a process improvement effort without a baseline of
current practices

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Myths and Abuses -2

Unwillingness or inability to interpret, tailor, or apply judgment
regarding a maturity model in light of business needs

• Undertaking process improvement without consideration of
business goals

• Following the “letter of the law” instead of the “intent of the law”

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Myths and Abuses -3

The assumption that high quality processes automatically mean
high quality designs, code, and implementations

• Chances are good that the quality of these artifacts will be
better, but there is no guarantee.

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Myths and Abuses -4

The assumption that low maturity organizations will automatically
produce low quality designs, code, and implementations

• Successful organizations that have low maturity processes
typically have lots of virtuosos.

• Often these organizations produce reasonable, even innovative
systems, but the results are unpredictable.

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

High-maturity-level organizations are guaranteed to enjoy high
profitability.

• Royal Enfield example…improved 1950’s design

High maturity can only be achieved through high “ritualization.”
• Red Bead experiment

Process Myths and Abuses -5

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 21

Sample Processes

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Spectrum

TSP
XP and
ScrumHackers

Inch-pebble
ironbound
contract

Agile processes

Milestone
plan-driven

models

Milestone risk-
driven models

RUP and MSS

Adapted from Justin Rockwood, “Choose your Weapon Wisely,” 2003

“Light” “Heavy”

Too scary to
imagine

Weight = amount of project overhead/code

Artifact HeavyArtifact Challenged

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

As We Look at These, Ask Yourself…

Can the “best” techniques be combined?
Can weaknesses be mitigated?
Do they tell you “everything” you need to know (e.g., requirements
elicitation)?
You can determine if the process benefit outweighs its costs (what
costs?).
More important:

What are the important aspects of your project?

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 24

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 5:
PSP and TSP
(Developed by Mel Rosso Llopart)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Who Studies PSP

Students
Software engineers
Managers (people) who care about quality
People who want to control their time
People who want to understand the value of data collection

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PSP Framework

Baseline Personal
Process

Personal Planning
Process

Personal Quality
Management

Cyclic Personal
Process

PSP1
Size estimating

Test report

PSP1.1
Task Planning

Schedule Planning

PSP2
Code reviews

Design reviews

PSP2.1
Design templates

PSP3
Cyclic development

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP0.1
Coding Standard

Size measurement
Process improvement proposal

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Why PSP?

All improvements stem from personal practice
• “no one should do intellectual work in a particular way,” but…

The Capability Maturity Model (CMM) defines corporate processes.
PSP is unique to individuals.
PSP is a path to excellence.

• “Level five for individuals”

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is the Big PSP Strategy?

Identify effective software development practices that can be used
by individuals.
Define them in a form usable in small programs (or in cycles).
Introduce the concepts by performing graduated exercises.

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PSP Concentrates on Metrics with Highest ROI

Reducing overall defect rates
Spending more time up front in the development cycle

• To gain more time at the end
Eliminating or nearly eliminating compile and test defects
Accurately estimating the time it takes to build software

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What You Learn About PLANNING

Planning is essential.
Taking more time up front means you will save time later, but...

• Better use of resources
• How to make a plan

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What You Learn About ESTIMATION

You must estimate the size of an effort.
There are many ways to estimate.

• Volume metrics (LOC)
• Function metrics (FP)

PSP teaches you the Probe estimation method.
• Find a proxy and use that to get a value.

You get better at estimating the more you try.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

To Summarize: PSP

A good process helps produce a good product.
Design and code reviews have a greater positive effect on quality
than any other activity.
Taking time up front means less time in the end.
You cannot improve without measurement.
Improving the software process begins with the least common
denominator…

… the software developer!

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PSP Is a First Step to Improvement, but ...

Team Software Process (TSP) can be used after PSP to improve
teams.
PSP is needed for the Team Software Process (TSP).
TSP is one method by which projects can improve.

• A definite way to get a team moving

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Team Software Process (TSP)

Defined framework for team software engineering
• provides balanced emphasis on process, product, and

teamwork
• stresses the use of software engineering and process principles

in a team-working environment
• defines roles and responsibility for each team member

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Principal Concepts of TSP

Provide process framework for small teams

Develop products in several cycles

Establish standards for quality and performance

Provide measurements for the team

Use role and team evaluations

Require process discipline

Provide guidance on solving team problems

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

4- Design a solution
5- Implementation
6- Testing
7- Postmortem

Next Launch

TSP Cycle

0- Launch
1- Develop strategy
2- Plan the work
3- Review cycle

requirements

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 0: Project Launch and Step 1: Develop a
Strategy

0- Project Launch
• Projects begin with a project launch.

- Introduce the overall product objectives and criteria for success.
- After launch, the seven steps begin.

1- Develop Strategy
• Review project goals and planning schedule.
• Agree on cycle objectives and criteria for success.
• Assess risks.

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 2: Plan the Work

Overall project plan
• use standard SPMP, review each cycle

Plan cycle activities
• size estimate
• resource estimate
• schedule estimate
• establish quality goals
• implementation goals

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 3: Review Cycle Requirements

Project requirements document
• use standard SRS, review each cycle

Cycle requirements
• decide which requirements will be satisfied
• identify test methods for each requirement

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 4: Design a Solution

System-level architecture and design
Cycle design

• map requirements to design abstractions
• ensure that design is consistent with system-level design and

architectures
• ensure that cycle products can be integrated with overall

product

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 5: Implementation

System-level implementation
• component construction and integration

Cycle-level implementation
• detailed component/module design
• component/module code
• component/module inspection

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 6: Testing

System-level test
• develop system-level test plan, quality review
• develop quality standards and goals

Cycle-level test
• develop component/module test plans
• develop partial system test plans

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 7: Postmortem

System- and cycle-level postmortem
• review performance data
• review quality data
• conduct role evaluations
• identify opportunities for improvement
• ensure all items for project/cycle are under CM control

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Implementing TSP

Actual implementation will vary.

Here is a practical overview...

Project Launch
System Strategy
System Plan
System Requirements
System Design
System Implementation
System Test
System Postmortem

Cycle Strategy
Cycle Plan
Cycle Requirements
Cycle Design
Cycle Implementation
Cycle Test
Cycle Postmortem

Cycle N

Repeat for
Each Cycle

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each step of the process has

A script with
• entry criteria
• the tasking that must be done
• evaluation of how you know it is done
• exit artifacts that should exist

Forms that help you collect data about the process

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Sample Form

Available
as an Excel
workbook

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SAMPLE TIME RECORDING LOG INSTRUCTIONS

Purpose

This form is for recording the time spent in each project phase.
These data are used to complete the Project Plan Summary.

General

 - Record all the time you spend on the project.
 - Record the time in minutes.
 - Be as accurate as possible.
If you need additional space, use another copy of the form.

Header

Enter the following:
 - Your name
 - Today's date
 - The instructor's name
 - The number of the program
If you are working on a non-programming task, also enter a job
description in the Program# field.

Date

Enter the date when the entry is made.

Example

10/18/2013

Start

Enter the time when you start working on a task.

Example

8:20

Stop

Enter the time when you stop working on that task.

SAMPLE TIME RECORDING LOG INSTRUCTIONS

SAMPLE TIME RECORDING LOG INSTRUCTIONS

		Purpose

		This form is for recording the time spent in each project phase.

These data are used to complete the Project Plan Summary.

		General

		 - Record all the time you spend on the project.

 - Record the time in minutes.

 - Be as accurate as possible.

If you need additional space, use another copy of the form.

		Header

		Enter the following:

 - Your name

 - Today's date

 - The instructor's name

 - The number of the program

If you are working on a non-programming task, also enter a job description in the Program# field.

		Date

		Enter the date when the entry is made.

		Example

		10/18/2013

		Start

		Enter the time when you start working on a task.

		Example

		8:20

		Stop

		Enter the time when you stop working on that task.

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

TSP Roles

TSP prescribes roles for each person on the team, their activities,
and their goals.

• Team Leader
• Development Manager
• Planning Manager
• Quality/Process Manager
• Support Manager

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example of TSP Roles: Leader

Team Leader goals
• build and maintain an effective team
• motivate all team members to work aggressively on the project
• resolve all the issues brought to you by team members
• keep managers informed on progress
• act as an effective meeting facilitator for the team

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

TSP Users

U.S. Navy
Microsoft
Xerox
Bechtel-Bettis
Advanced Information Services

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PSP/TSP Reviewed

Tool Support:
http://processdash.sourceforge.net/

http://processdash.sourceforge.net/

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 30

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 6:
Architecture-Centric Development
Method (ACDM)
(Developed by Dan Shoemaker)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

ACDM Architecture-Centric Development Method
http://reports-archive.adm.cs.cmu.edu/isri.html

ACDM is an iterative development method.
• iteratively refines and reviews the architecture until it is deemed

fit for the purpose
• permits iteration in the production of the

elements/system/products
ACDM has seven stages in the development method.

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Stage 1 – discover architectural drivers

Stage 2 – define project scope

Stage 3 – create notional architecture

Stage 4 – review architecture

Stage 5 – production go/no-go

Stage 6 – production planning

Stage 7 – production

Stage 6 – experiment planning

Stage 7 – experiment & refine arch

no-go

go

ACDM Stages -1

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Stage 1 – discover architectural drivers

Stage 2 – define project scope

Stage 3 – create notional architecture

Stage 4 – review architecture

Stage 5 – production go/no-go

Stage 6 – production planning

Stage 7 – production

Stage 6 – experiment planning

Stage 7 – experiment & refine arch

No-Go

Go

Period of Uncertainty

ACDM Stages -2

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

ACDM Strengths

Product and architectural focus

Agile and relatively lightweight

Structured but flexible and tailorable

Iterative

Derived from CMU graduate student practitioners

Provides guidance for roles, activities, and artifacts

Derives requirements (architectural drivers) from business drivers

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

ACDM Weaknesses

Design process (missing other phases?)
• Research to combine with other process frameworks

Industrial experience or data
• New but gaining data all the time

Unclear how well ACDM scales up to large projects (looks good
though)
Still maturing
Limited tool support and templates
Requires a relatively good understanding of architectural concepts

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

ACDM Centerpiece

Architecture
• Complexity/scope driving need for more abstraction
• Key to describing and predicting quality attributes
• Lots of development and research
• Easily misunderstood

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

Process/methods defined

Process frameworks

Process problems and myths

PSP, TSP, and ACDM

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 10

Agile Processes
XP and Scrum
(Developed by David Root)

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scott Adams, Inc. Dist. By UFS, INC.

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is Agile?

Webster’s Dictionary:
“Marked by ready ability to move with quick easy grace”

Alistair Cockburn (as applied to software development):

“Ability to change development in response to changing
requirements”

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Why Agile Processes?

What Agile proponents say:
• Flexibility

- Market changes
- Technology changes (Moore’s Law)
- Unclear requirements

• More coding, less paper
• Higher quality, quicker

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

But, opponents say…

No plan, no structure
• Architecture?
• Easily derailed
• Focus on short term makes teams lose sight of final goal

Inefficient use of developers
• pair programming

No documentation
Unrealistic customer involvement

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

One Data Point

“ More than two thirds of all corporate IT organizations will use
some form of agile software development process in the next 18
months.” Giga Information Group Inc., 2002

Cutter Report “Agile vs. Heavy”

Use is increasing.

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Agile Processes
From Agile Alliance

XP
Scrum
Crystal
Feature Driven
Open Source Software Develop

RUP
Dynamic Systems Develop
Method
Adaptive Software Develop
Synch and stabilize

Agile Modeling

Pragmatic Programming

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Common Characteristics -1
From Agile Alliance

Individuals and Interactions over Processes and Tools
• Team dynamics

- experience mix, team size
• Physical workspace, communality, meetings

Working Software over Comprehensive Documentation
• Code primary artifact
• Iterative (subscription)
• Value to the customer
• QA inherent

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Common Characteristics -2
From Agile Alliance

Customer Collaboration over Contract Negotiation
• Customer onsite (involved/knowledgeable)
• Requirements-centric
• Rapid return of perceived value
• Customer expectation management

Responding to Change over Following a Plan
• Developer/customer team
• Emergent requirements
• Short iterations

- Smaller changes
• Adaptation

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Weaknesses

Communication is critical
Projects with non-decomposability/coupled functionality
Scalability
Architecture?
Reliance on corporate knowledge

• Document at end
“Green field” development vs. legacy extension or modification
Used as an excuse to not do process

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

More Weaknesses…

Maintenance
Long lifecycle
Centralized management control
“Big” specifications
Required documentation

• Safety critical
Non-flexible work environment

• Distributed development?
Fixed price and scope

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Agile Users

Microsoft
Thoughtworks*
Valtech Technologies
RADsoft
Boeing

• < 5 on a team
Google

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Minimal Research on Agile Methods …
Why?
There is research on specific techniques.
Small Scale comparisons

• No “normal” size projects
Usually academically based
Short term…
Some studies are aging.

• Changes in technology?
• Changes in theory (architecture)

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

eXtreme Programming

Background
• Kent Beck in the 90s
• Primary focus was from risk

- Schedule slips
- Rapid changes
- Business drivers misunderstood
- Defects

• Taking programmer strengths to extreme

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Four Values of XP

Communication
• Source of most problems

Simplicity
• Less complexity, fewer problems

Feedback
• Customer (or representative) onsite

Courage (to experiment or change code)

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

XP Practices

Pair programming

Collective ownership
Continuous integration
40 hour week
Customer onsite

Planning game

Small releases
Metaphor
Simple design
Testing - TDD

Refactoring

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Planning Game

Use “stories”
• Different than scenarios?
• Customer understanding

Onsite customer
• Immediate feedback – both ways

- Problems
- Correct functionality, etc.

Prioritization – value and difficulty
How does this work with “green field”?

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Test-Driven Development (TDD)

Write tests first
• Until current code fails test
• Better focus

Auto test suite – regression testing
• Any additions, changes, etc. must pass tests
• Annoying for small changes?
• Time/resources as much as coding
• Nice deliverable with code? Maintenance?

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Pair Programming

Controversial – looking over the shoulder
Output
Quality – inspection on the fly
Corporate knowledge
Right pairing?
Most studies from academia

• On average about same quantity with higher quality

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

XP Roles

Programmer/Tester
• Write tests, then code

Customer
Tracker – data collection and analysis

• Velocity
Coach – process guru
Consultant – technical expert
“Big Boss” – final decisions

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

XP Workplaces

Co-located
• Some distributed

Open – no cubicles
• White boards

Hiding and relaxing places – “decompress”
Food (rewards, like M&M’s)

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Where It Seems to Work Best

Small teams 5-10
Some XP experience

• Excuse to hack?
Extension of existing application
Low need for documentation, tracking
Onsite customer

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scrum

More management focus
Iterative – sprints
Works well with XP practices
Pig and chicken roles (ham and eggs)

• Committed or just participating
• Product owner, team, and ScrumMaster
• End users, managers

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Meetings – Time Limited

Sprint planning every cycle
• Select work
• Estimation for work – sprint backlog

Daily scrum – 15 minutes max
• Standup
• What was (yesterday) and is to be done (today)
• Problems

Scrum of scrums – coordinating teams
• Does this really work?

Reviews

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Artifacts

Product backlog – entire project tasks
Sprint backlog – that sprint’s tasks
Burndown chart

http://en.wikipedia.org/wiki/File:SampleBurndownChart.png

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Some criticisms of Agile

Too easily used as an excuse to not have formal process
• Need discipline, or experienced coach

Tendency toward short term view
• Too easy to push off tasks to next cycle

Project environment critical
• Need for documentation?

37Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SPAWAR Reference for Agile

RITE Agile Incremental Development Process v1.1 010613
UPDATED

38Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 7:
Rational, Agile, and Open Unified
Processes (RUP, AUP, OUP)
(Developed by David Root)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

RUP, AUP, OUP
• Rational Unified Process, and related Agile and Open Unified

Processes
Agile processes

• XP and Scrum
Choosing a process

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Rational Unified Process

Communication
Unified

Modeling
Language

Use-case-driven
Architecture-centric

Iterative
Incremental

UNIFIED PROCESS

Idea of
rationalizing the

common
practices.

Result of the
industrialization

effort

RATIONAL

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Process Outline - Phases Versus Iterations

Phases
Inception Elaboration Construction Transition

Requirements

Deployment

Implementation

Test

Analysis & Design

Workflows

Iterationsiter.
#1

iter.
#2

iter.
#n

Business Modeling

Project Management

Environment

Configuration & Change Man..

C
or

e
of

 a
lm

os
t a

ny
 p

ro
ce

ss
W

ha
t U

ni
fie

d
Pr

oc
es

s s
pa

ns

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Characteristics

Iterative and incremental
Semi-formal

• UML
Generic framework rather than
specific

OO process approach
Modeling -based
Use-case-driven
Component-based
Architecture-centric

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

RUP Modeling

Abstractions to understand domains
• Use case
• Analysis
• Design
• Deployment
• Implementation

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Planning

Development – phase plans
• Iteration plans

Monitoring plans
• Measurement
• Risk
• Problems
• Acceptance

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

RUP Roles (about 26 of them)

Developer Worker Set
• Architect
• Architect reviewer
• Capsule designer
• Code reviewer
• DB designer
• Design reviewer
• Designer
• Implementer
• Integrator

Analysts
• Business process, designer,

reviewer
• Requirements
• System
• Use case specifier
• User interface designer

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

More Roles...

Manager
• Change control
• Configuration
• Deployment
• Process
• Project
• Project reviewer

Tester
• Test designer
• Testers

Additional
• Fit all categories

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

RUP Review – Strengths

Structured

Iterative

Use cases – strong concept, used widely

Tied to UML

Robust tool support – see all at IBM

Tailorable/Scalable

“Agile”?

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

RUP Review – Weaknesses

Use cases – Do they work for all projects?
Learning curve

• Tied to tools
• UML

Architecture?
Roles – Too many? How to combine?
Non-functional requirements

• Quality attributes?

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

RUP Centerpiece

Model analysis
• Modeling allows stakeholders to understand the problem.
• Great for functionality
• Not so good for quality attributes

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Agile Unified Process

Simplified from RUP

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Process Outline – Phases Versus Iterations

Phases
Inception Elaboration Construction Transition

Requirements

Deployment

Implementation

Test

Analysis & Design

Workflows

Iterationsiter.
#1

iter.
#2

iter.
#n

Business Modeling

Project Management

Environment

Configuration & Change Man..

C
or

e
of

 a
lm

os
t a

ny
 p

ro
ce

ss
W

ha
t U

ni
fie

d
Pr

oc
es

s s
pa

ns

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Disciplines

Model – compare to RUP
Implementation
Test
Deployment
Configuration management
Project management
Environment

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Open Unified Process

Eclipse
Very lean UP
All phases include risk analysis

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Open UP roles

Analyst
Any role (I like this one, take out trash…)
Architect
Developer
Project manager
Stakeholder
Tester

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

AUP and OUP Summary

More Agile than RUP
Keeps basic phases, iterations, work flows
Smaller teams
Fewer roles
Less overhead?
Big and small picture?

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

Agile processes
• XP and Scrum

RUP, AUP, OUP
Comparing Processes

• There are no unique perfect solutions to any software project.
• Need to learn how to adapt and adopt as warranted.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 21

Choosing. . .

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Common Errors in Choosing

Going from framework to project
Looking for a recipe…

• There is no silver bullet.
• Do not tailor your project to a process, instead tailor the “right

process.”
Supermarket shopping…

• Do not pick all the “best” techniques within processes and mix
them together.

• But you can use some in tailoring…

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 23

Let’s Compare!

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Comparative Matrix
Where would you put ACDM?

AGILE TSP RUP
TEAM

Size 5-10 3-7 > 10
Experience Required High Low High

Location (co-located or distributed) co-located Either Either
REQUIREMENTS

Avail. (Undocumented or available) Undoc Available Undoc
Changability Volatile Static Mid-volatile

CUSTOMER
Heavily involved Yes No Yes

Experienced Yes No No
DEVELOPMENT ENVIRONMENT

Organizational hierarchy Democratic Autocratic Autocratic
Culture Decentralized Centralized Centralized

Tools Low Med Heavy
PRODUCT

Documentation requirements Poor Good Good
Traceability Poor Good Very Good

Sheet1

						AGILE		TSP		RUP

		TEAM

		Size				5-10		3-7		> 10

		Experience Required				High		Low		High

		Location (co-located or distributed)				co-located		Either		Either

		REQUIREMENTS

		Avail. (Undocumented or available)				Undoc		Available		Undoc

		Changability				Volatile		Static		Mid-volatile

		CUSTOMER

		Heavily involved				Yes		No		Yes

		Experienced				Yes		No		No

		DEVELOPMENT ENVIRONMENT

		Organizational hierarchy				Democratic		Autocratic		Autocratic

		Culture				Decentralized		Centralized		Centralized

		Tools				Low		Med		Heavy

		PRODUCT

		Documentation requirements				Poor		Good		Good

		Traceability				Poor		Good		Very Good

Sheet2

		

Sheet3

		

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Comparative Matrix with ACDM

AGILE TSP RUP
TEAM

Size 5-10 3-7 > 10
Experience Required High Low High

Location (co-located or distributed) co-located Either Either
REQUIREMENTS

ability (Undocumented or available) Undoc Available Undoc
Changability Volatile Static Mid-volatile

CUSTOMER
Heavily involved Yes No Yes

Experienced Yes No No
DEVELOPMENT ENVIRONMENT

Organizational hierarchy Democratic Autocratic Autocratic
Culture Decentralized Centralized Centralized

Tools Low Med Heavy
PRODUCT

Documentation requirements Poor Good Good
Traceability Poor Good Very Good

ACDM

>3
Med

Either

Mid
Avail

No
Yes

Low

Average

Mid
Either

Good

Sheet1

						AGILE		TSP		RUP

		TEAM

		Size				5-10		3-7		> 10

		Experience Required				High		Low		High

		Location (co-located or distributed)				co-located		Either		Either

		REQUIREMENTS

		Availability (Undocumented or available)				Undoc		Available		Undoc

		Changability				Volatile		Static		Mid-volatile

		CUSTOMER

		Heavily involved				Yes		No		Yes

		Experienced				Yes		No		No

		DEVELOPMENT ENVIRONMENT

		Organizational hierarchy				Democratic		Autocratic		Autocratic

		Culture				Decentralized		Centralized		Centralized

		Tools				Low		Med		Heavy

		PRODUCT

		Documentation requirements				Poor		Good		Good

		Traceability				Poor		Good		Very Good

Sheet2

		

Sheet3

		

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Criteria…
You should be asking questions.

Is the preceding all-inclusive?
What other criteria might apply?

• Look at teams – What about culture, personalities?
Would these apply to all projects?

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Choosing Suitable SDLC

Choose Your Weapon Wisely - Justin Rockwood 2003
Weighted Matrix model

• 1- weakness
• 2- push
• 3- strength

Compares suitability of 5 methods
• RUP
• MS Synch and Stabilize
• TSP
• XP
• Scrum
(Haven’t added ACDM yet…)

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Choose Your Weapon Wisely
Justin Rockwood 2003

• Organization-wide processes
• New process adoption
• Type of product
• Requirements stability
• Requirements traceability

• Average team size and total
developers

• Product size and complexity
• Developer competence and

experience
• “Hacker sentiment”
• Management style

Weighted score for following project characteristics:

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example for Total Developers

How many developers in total project?
a) < 40
b) 41 – 100
c) Hundreds…

RUP MSS TSP XP Scrum

a) 2 2 2 2 2
b) 3 3 1 1 2
c) 3 3 1 1 2

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example for Type of Product

What type of project?
a) Life-critical (e.g., patient monitor, ATC)
b) Non-life-critical, but mission-critical (e.g., banking)
c) Embedded, neither life- or mission-critical
d) Application, neither life- or mission-critical

RUP MSS TSP XP Scrum
a) 3 2 3 1 1
b) 2 2 2 2 2
c) 3 3 2 2 2
d) 2 2 2 2 2

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Add Up Scores

11 project areas, but…
• Not definitive – Starting point for research

- General direction
- Tied scores, or little variation

• Lower scoring method may still be suitable
• Not complete, needs more work

- Weighting some criteria more than others?
- Defining other processes

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Boehm and Turner: “Balancing Agility with
Discipline,” 2004

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Personnel Discriminator…

Boehm and Turner: “Balancing Agility with Discipline,” 2004

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

And Then

Apply discriminators
• Criticality – Measured by loss, annoyance to $ to life
• Size – Gradient?
• Cultural – Chaos or planned
• Dynamism – Volatility of requirements

Closer to center promotes Agile

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Recommendations

The methods shown just point to the right direction and are not
absolute answers.

• Analysis of current method
Plan any adoption of a new method.
ROI is important.

• As is cost to benefit
All methods work for the right.

• Project
• Team
• Organization

(But some may be better.)

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

Review the criteria that you would use to choose a process
framework.
Don’t lie to yourself or cheat if you are going to adopt one.

• Adopt whole, then tailor.

37Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

Agile processes
• XP and Scrum

RUP, AUP, OUP
Choosing a process

• There are no unique perfect solutions to any software project.
• Need to learn how to adapt and adopt as warranted.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 38

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 8:
Software Assurance Lifecycle and
Maturity Models

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software assurance practices

Software assurance lifecycle models

Software assurance maturity models

CLASP overview

Outline

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 4

Software Assurance Practices

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Perspectives

http://security.gloriad.org/blog/2007/10/21/traditional-thinking/

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

So What Should We Do?

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understand the Cost of Correcting Software Defects

McConnell, Steve. “Software Quality at Top Speed.” August 1996.

http://www.stevemcconnell.com/articles/art04.htm

http://www.stevemcconnell.com/articles/art04.htm

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example Security Practices -1

Project management
• Enterprise software security framework
• Security development lifecycle
• Risk management and ongoing assessment

Full lifecycle
• Attack patterns: a structured representation for how attackers

think
• Assurance cases: demonstration that a system satisfies its

security properties
Requirements engineering

• Misuse/abuse cases: anticipate abnormal behavior

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example Security Practices -2

Architecture and design
• Architectural risk analysis

Code and test
• Secure code reviews
• White box, black box, and penetration testing

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 10

Software Assurance Lifecycle
Models

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Enterprise Software Security Framework

Steven, John. “Adopting an Enterprise Software Security Framework.” IEEE Security & Privacy 4, 2 (March/April 2006): 84–87.
https://buildsecurityin.us-cert.gov/daisy/bsi/resources/published/series/bsi-ieee/568.html

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SDLC with Defined Security Touchpoints

SDLC: Software Development Life Cycle
McGraw, Gary. Software Security: Building Security In. Boston, MA: Addison-Wesley Professional, 2006.

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Microsoft’s Security Development Lifecycle

http://msdn2.microsoft.com/en-us/library/ms995349.aspx

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assurent Software Security Lifecycle

http://www.assurent.com/index.php?id=59

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assess Security Risk Across the SDLC

concept requirements build integration operation

RFP design testing acceptance

Acquisition Development Implementation

Security Risk Analysis

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

Are any of these security lifecycle models familiar?

Do you know of organizations or people using them?

Which do you think would be easiest to use?

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Attack Patterns

Blueprint for creating an attack (like a sewing pattern)
Consists of

• Attack prerequisites
• Attack description
• Related vulnerabilities
• Method of attack

• Skills and resources required to
execute attack

• Applicable contexts
• Prevention and mitigation

strategies

Consult CAPEC: Common Attack Pattern Enumeration and Classification http://capec.mitre.org/

http://capec.mitre.org/

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assurance Cases

Applicable during all phases of software development
Similar to a legal case
Presents arguments showing how a top-level claim is supported by
evidence

• The system is acceptably secure.
• The system has none of the common coding defects that lead

to security vulnerabilities.
Considers people, process, and technology

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Misuse/Abuse Cases

Document a priori how software should react to illegitimate use (can’ts
and won’ts).

• Brainstorm with designers and software security experts.
- How does the software distinguish between good and bad input?
- Between legitimate application vs. rogue application requests?
- How can an attacker disrupt software communication interfaces?
- Does the database server assume that the client manages all data access

permissions?

Ask:
• What assumptions are implicit in our system?
• What things make our assumptions false?
• What are some candidate attacks (consult attack patterns)?

Strike a balance between cost and value.
• Prioritize which cases to develop.
• Risk analysis helps guide case selection.

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture and Design

Not the same as security architecture
• architecture of security components (firewalls, IDS, other

sensors, network monitoring points, etc.)
Architectural Risk Analysis

• software characterization
• threat analysis
• architectural vulnerability assessment
• risk likelihood determination
• risk impact determination
• risk mitigation planning

Perform inspections and peer reviews

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Secure Code Review/Scanning

Adopt a secure coding standard.
• Validate input
• Perform bounds checking (buffer overflows)
• Check for conditions that could lead to exceptions
• Base access decisions on permission, not exclusion (default

deny)
• Enforce the principle of least privilege for processes

- Time out elevated privileges
• Sanitize data sent to other systems
• Guard against race conditions (infinite loops, deadlocks,

resource collisions)
• Review code against attack patterns and misuse/abuse cases

Conduct structured code inspections and peer review of source
code.
Use static source code analysis tools.

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Testing -1

Test approach and selection determined based
on risk analysis

• Use attack patterns and abuse cases
Emphasizes what an application should not do

• “Unauthorized users should not be able to
access data.”
- Validate least privilege
- Time-limited escalation of privilege
- Disable account after x unsuccessful login

attempts

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Testing -2

White box testing
• validate design decisions and assumptions
• analyze data, control, information flows; coding practices;

exception and error handling
Black box testing

• focus on externally visible behavior
• examine requirements, protocols, interfaces, attempted attacks
• vulnerability scanning is one example

Penetration testing (revised)
• final production environment; final configuration
• structured to demonstrate impact of likely risks

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 24

Software Assurance Maturity
Models and Frameworks

(Developed by Dan Reddy, EMC-2)

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

BSIMM

Product Security Office: Delivers Product
Security from Concept to Customer

Security
Development

Lifecycle

Software Supply Chain Risk Management

Security
Certifications

Vulnerability
Response

Concept Customer

Cross Industry Involvement

Founding member ‘07

“… The data show that EMC's Product
Security Office practices have improved
greatly over time and currently rank
among the most advanced.“

Trusted Technology Forum:
Building Industry Standard for
Supply Chain

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 26

BSIMM8: The Building
Security In Maturity Model

(Authored by Gary McGraw, Sammy Migues, and
Jacob West; Revised by Ole Villadsen)

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Prescriptive vs. Descriptive Models

Prescriptive models describe
what you should do.

• SAFECode
• SAMM
• SDL
• Touchpoints

Every firm has a methodology
they follow (often a hybrid).
You need an SSDL.

Descriptive models describe
what is actually happening.
The BSIMM is a descriptive
model that can be used to
measure any number of
prescriptive SSDLs.

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

BSIMM: Software Security Measurement

Real data from (109) real initiatives
256 measurements
36 over time
McGraw, Migues, and West

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Software Security Framework

Four domains
Twelve practices
Three levels within each Practice

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Plus additional
anonymous

firms

109 Firms in BSIMM8 Community

BSIMM8, Page 3

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building BSIMM

Build a maturity model from actual data gathered from 9 well
known large-scale software security initiatives.

• Create a software security framework.
• Interview nine firms in-person.
• Discover 110 activities through observation.
• Organize the activities in 3 levels of increasing maturity.
• Build scorecard.

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

BSIMM8 Scorecard

113 Activities

3 levels

Top 12 activities in Yellow
o 68 (62%) of 109 firms

Comparing scorecards
between releases is
interesting.

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

BSIMM8 Scorecard (cont’d)

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

BSIMM8 as a Measuring Stick

Compare a firm with peers
using the high water mark
view.
Compare business units.
Chart an SSI over time.

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

BSIMM8 as a Longitudinal Study

36 firms measured at least
twice
Raw score increased in 29
of 36 firms
Observation count
increased by 33.4%
“SSI’s mature over time”

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

BSIMM8

BSIMM8 released September 2017 under creative commons
http://bsimm.com

BSIMM is a yardstick.
• Use it to see where you stand.
• Use it to figure out what your peers do.

http://bsimm.com/

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 37

An Assurance Ecosystem

(Developed by Dan Reddy, EMC-2)

38Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

One View as to How the Pieces Fit

BSIMM

Shows data congruence
of security activities
found in companies that
were analyzed

• Building secure
products

• Prescriptive
• How should I do it?
• Where should I

start?

• Standard that outlines
best practices of ICT
Providers to mitigate
vs. tainted and
counterfeit products.

• Method to accredit
Trusted Technology
Providers.

39Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

EMC-Wide Standard with Focus on Risk and
Organization Maturity

 Authentication and
access control

 Logging
 Network security
 Cryptography and

key management
 Serviceability
 Secure design

principles

 Input validation
 Injection

protection
 Directory traversal

protection
 Web and C/ C++

coding standards
 Handling secrets

PRODUCT SECURITY POLICY

PRODUCT
RISK

(4 levels)

 Critical: Requires executive sign-off
 High: Requires remediation in next release
 Medium: Requires monitoring
 Low

Design Standard Coding Standard

 Optimized:
Risk is minimized

 Integrated:
Risk is controlled

 Proactive:
Risk is understood

 Reactive:
Risk is unknown

ORG MATURITY LEVELS

Security Development Lifecycle

Gap assessment
as part of

standard product
readiness process

 Sourcing software
 Source code

protection
 Software delivery

protection
 Product counterfeiting

prevention

Source Code Standard

 Training
 Requirements
 Threat modeling

Process
Standard

 Code scanning
 Security testing
 Documentation

 Assessment
 Vulnerability

response

40Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Customers Buy with More Confidence:
Providers and Suppliers Can Extend Supply Chain Integrity

Evaluation
of Products,
(e.g. CC)

Follow
O-TTPS
Best
Practices

Commercial
ICT

Customers

“Buy
with
Confidence”

Trusted
Technology
Provider

Trusted
Technology Products
and sub components O-TTPS

Compliant
Providers
e.g. follows
secure
engineering,
supply chain
best practices
(trusted)

Un-trusted Suppliers and Providers who do not
follow the Best Practices – who are not accredited

41Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Classifying Vulnerabilities: Some Useful Resources

CVE: Common Vulnerabilities & Exposures Database
http://cve.mitre.org

CWE: Common Weakness Enumeration
• A community-developed dictionary of software weakness types

http://cwe.mitre.org/

NVD: National Vulnerability Database
http://nvd.nist.gov
• 56,965 CVE Vulnerabilities

Bugtraq mailing list: how to exploit and fix vulnerabilities
http://www.securityfocus.com/archive/1

http://cve.mitre.org/
http://cwe.mitre.org/
http://nvd.nist.gov/
http://www.securityfocus.com/archive/1

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 42

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 9:
OWASP CLASP Overview
(Developed by Nick Coblentz)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

OWASP CLASP Presentation Outline

Role-Based View
• Introduction to each role

Activity-Assessment View
• Examples

Activity-Implementation View
• Examples

CLASP Roadmap

What Is CLASP?
CLASP Best Practices
CLASP Organization
Bird’s-Eye View of CLASP
Process
Concepts View
• Security Services
• Vulnerability View

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is CLASP?

Comprehensive, Lightweight, Application Security Process

OWASP project

“Activity driven, role-based set of process components whose core
contains formalized best practices for building security into your
existing or new-start software development lifecycles in a
structured, repeatable, and measurable way”

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is CLASP?

Method for applying security to an organization's application
development process

Adaptable to any organization or development process

OWASP CLASP is intended to be a complete solution that
organizations can read and then implement iteratively

Focuses on leveraging a database of knowledge (CLASP
vulnerability lexicon, security services, security principles, etc.) and
automated tools/processes

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CLASP Best Practices

Institute security awareness programs
• Provide security training to stakeholders
• Present organization's security policies, standards, and secure coding

guidelines

Perform application assessments
• Is a central component in overall strategy
• Find issues missed by implemented “Security Activities”
• Leverage to build a business case for implementing CLASP

Capture security requirements
• Specify security requirements alongside business/application requirements

Implement secure development process
• Include “Security Activities,” guidelines, resources, and continuous

reinforcement

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CLASP Best Practices

Build vulnerability remediation procedures
• Define steps to identify, assess, prioritize, and remediate

vulnerabilities
Define and monitor metrics

• Determine overall security posture
• Assess CLASP implementation progress

Publish operational security guidelines
• Monitor and manage security of running systems
• Provide advice and guidance regarding security requirements

to end-users and operational staff

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CLASP Organization

Concepts View
Role-Based View
Activity-Assessment View

• Implementation costs
• Activity applicability
• Risk of inaction

Activity-implementation View
• 24 “Security Activities”

Vulnerability Lexicon
• Consequences, problem types,

exposure periods, avoidance and
mitigation techniques

Additional Resources

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Bird’s-Eye View of CLASP Process

Stakeholders
• Read and understand “Concepts View”
• Read and understand “Role-Based View”

Project manager
• Reads and understands “Activity-Assessment View”
• Determines applicable and feasible “Security Activities” to

implement
• Ties stakeholder roles to “Security Activities”
• Facilitates “Roles” to learn and execute “Security Activities”
• Measures progress and holds “Roles” accountable (Metrics)

Roles (PM, Architect, Designer, Implementer, etc.)
• Execute “Security Activities” leveraging automated tools and

CLASP and Organization knowledge base (Vulnerability
Lexicon and other Resources)

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Concepts View – CLASP Security Services

Fundamental security goals that must be satisfied for each
resource:

• Authorization (access control)
• Authentication
• Confidentiality
• Data Integrity
• Availability
• Accountability
• Non-Repudiation

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Concepts View – Overview of Vulnerability View

Vulnerability
• Platforms

- Language, OS, DB, etc.
• Resources
• Risk assessment

- Severity
- Likelihood

• Avoidance and mitigation
periods

• Additional Info
- Overview, description,

examples, related problems

Knowledge Base Provided!

Vulnerability (Continued)
• Platforms

- 104 types
- Example: Buffer Overflow

• Categories:
- Range and Type Errors
- Environmental Problems
- Synchronization and Timing

Errors
- Protocol Errors
- General Logic Errors

• Exposure periods
- Development artifact

• Consequences
- Violated Security Service

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Role-Based View - Introduction

CLASP ties “Security Activities” to roles rather than development
process steps
Roles:

• Project Manager
- Drives the CLASP initiative

• Requirements Specifier
• Architect
• Designer
• Implementer
• Test Analyst
• Security Auditor

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Role-Based View – Project Manager

Drives CLASP initiative
Management buy-in mandatory
Security rarely shows up as a feature
Responsibilities:

• Promote security awareness within team
• Promote security awareness outside team
• Manage metrics

- Hold team accountable
- Assess overall security posture (application and organization)

Possibly map this to a Security Manager and Project Manager
because

• PM may not have expertise
• SM may want to apply over the entire organization
• PM would still be responsible for day-to-day tasks

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Role-Based View – Requirements Specifier

Generally maps customer features to business requirements
Customers often don't specify security as a requirement
Responsibilities:

• Detail security relevant business requirements
• Determine protection requirements for resources (following an

architecture design)
• Attempt to reuse security requirements across organization
• Specify misuse cases demonstrating major security concerns

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Role-Based View – Architect

Creates a network and application architecture
Specify network security requirements such as firewall, VPNs, etc.
Responsibilities:

• Understand security implications of implemented technologies
• Enumerate all resources in use by the system
• Identify roles in the system that will use each resource
• Identify basic operations on each resource
• Help others understand how resources will interact with each

other
• Explicitly document trust assumptions and boundaries
• Provide these items in a written format and include diagrams

(for example: network component model, application)

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Role-Based View – Designer

Keep security risks out of the application
Have the most security-relevant work
Responsibilities:

• Choose and research the technologies that will satisfy security
requirements

• Assess the consequences and determine how to address identified
vulnerabilities

• Support measuring the quality of application security efforts
• Document the “attack surface” of an application

Designers should
• Push back on requirements with unrecognized security risks
• Give implementers a roadmap to minimize the risk of errors requiring

an expensive fix
• Understand security risks of integrating third-party software
• Respond to security risks

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Role-Based View – Implementer

Application developers
Traditionally carries the bulk of security expertise

• Instead this requirement is pushed upward to other roles
Responsibilities:

• Follow established secure coding requirements, policies,
standards

• Identify and notify designer if new risks are identified
• Attend security awareness training
• Document security concerns related to deployment,

implementation, and end-user responsibilities
Bulk of security expertise is shifted to designer, architect, and
project manager

• Pros and Cons?

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Role-Based View – Test Analyst

Quality assurance
Tests can be created for security requirements in addition to
business requirements/features

• Security testing may be limited due to limited knowledge
May be able to run automated assessment tools

• May only have a general understanding of security issues

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Role-Based View – Security Auditor

Examines and assures current state of a project
Responsibilities:

• Determine whether security requirements are adequate and
complete

• Analyze design for any assumptions or symptoms of risk that
could lead to vulnerabilities

• Find vulnerabilities within an implementation based on
deviations from a specification or requirement

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Activity-Assessment View Overview

There are 24 CLASP “Security Activities”
• Added iteratively

Activity-Assessment View allows a project manager to determine
appropriateness of CLASP activities
Guide provides

• Activity applicability
• Risks due to omission of activity
• Estimation of implementation cost
• Roles that will execute activity

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Activity-Assessment and Roles

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Activity-Assessment Example Item

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Activity-Implementation View Introduction

Defines the purpose or goals for the “Security Activity”
Provides details regarding

• Sub goals such as
- “Provide security training to all team members”
- “Appoint a project security officer”

• Describes in detail how to carry out tasks or accomplish goals
- Details which CLASP resources support these tasks
o ex: vulnerability lexicon to examine secure coding practices
o ex: Security Services to examine threats to a resource (threat

modeling)

For example: “Perform security analysis of system requirements
and design (threat modeling)”

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CLASP Roadmaps

Legacy application roadmap:
Minimal impact on ongoing
development projects
Introduce only highest relative
impact on security
Key steps (12 total):

• 1 – Security awareness
program

• 6 – Security assessment
• 8 – Source-level security

review

Green-field roadmap:
Holistic approach
Ideal for new software development

• Especially Spiral and Iterative
models

Key steps (20 total):
• 1 – Security awareness program
• 2 – Metrics
• 3 – 8 Security related planning and

design
• 9 – Security principles
• 12 – Threat modeling
• 16 – Source-level review
• 17 – Security assessment

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Resources

More information:
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project

Downloadable “Book”
http://www.list.org/~chandra/clasp/OWASP-CLASP.zip

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 26

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 10:
What are Requirements?
(Authored by Kevin Gary, Arizona State University)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Fred Brooks’ quote

"The hardest single part of building a
system is deciding what to build... No
other part of the work so cripples the

resulting system if done wrong. No other
part is more difficult to rectify later."

-- Fred Brooks

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Definitions
Software Requirements

• Descriptions of the services and constraints of a software system
• Tells what to build, not how to build it

Why Spend a Lot of Time?
Requirements are the source for all future steps in the software life cycle.

• Lays the basis for a mutual understanding
- Consumer (what they get)
- Software producer (what they build)

• Identifies fundamental assumptions
• Potential basis for future contracts

Better get it right - upon delivery, some software is rejected by customers.
Changes are not cheap - better make them now rather than later.

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Non-functional Requirement Types

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

User vs. System Requirements
User requirements

• Statements in natural language plus diagrams of the services
the system provides and its operational constraints
- written for customers

• Should describe functional and non-functional requirements so
that they are understandable by system users who don’t have
detailed technical knowledge

• Defined using natural language, tables and diagrams
System requirements

• A structured document setting out detailed descriptions of the
system services
- A contract between client and contractor.

• More detailed specifications of user requirements
• Serve as an initial basis for designing the system

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Examples
Specify whether the following are

• Functional, Nonfunctional, and/or Domain
- If nonfunctional, are they Product, Organizational, or External?

• System or User

1. “The user shall be able to toggle between displaying and hiding all HTML markup tags
In the document being edited with the activation of a specific triggering mechanism.”
2. “The online credit-card payment facility shall support a minimum of 1000 credit-card
transactions per hour”.
3. “The doctor shall be able to search the patient tracking system for similar symptoms
By typing keywords into a dialog box on the application’s main web page.”

4. “The XML-based content management system shall support UTF-8 encoding”
5. “The system shall be up and running 99.9999% of the time”.
6. “The system shall support the EDI standard for medical patient data exchange”
7. “The user shall save files by selecting the’FileSave’ menu choice”

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Other Requirements Classifications
Change is a Risk!

• The priority of requirements from different viewpoints changes during
the development process.

• System customers may specify requirements from a business
perspective that conflict with end-user requirements.

• The business and technical environment of the system changes
during its development.

Enduring requirements
• Stable requirements derived from the core activity of the customer

organization.
- e.g. a hospital will always have doctors, nurses, etc.

• May be derived from domain models
Volatile requirements

• Requirements that change during development or when the system is
in use.
- e.g. In a hospital, requirements are derived from health-care policy.

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary
Requirements are the representation of what the customer wants
not how you will implement it.
Requirements can be classified several ways:

• Functional vs. Non-functional
• User vs. System
• Domain-specific vs. domain-independent
• Enduring vs. Volatile

Requirements can be annotated to help manage change.
Dr. Gary’s tip: Annotate your features and requirements!!!

• For each feature/requirement, note the classification above.
• For each feature/requirement, annotate in as many ways that

are useful to managing the scope of impact when they change.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Checklist Example
Attribute Values Description
1.Verifiable Yes/No Can you (did you) write a test to check for it?

2.Traceable GUID Assign a unique identifier to the feature/req

3.Volatility % 0% = Enduring, 100% = (very) Volatile

4.Behavioral Funct/NF if NF, classify (slide 7-8, WhatAreReqs slides

5.Perspective User/System

6.Domain-specific Yes/No if Yes, describe source

7.Priority High/Med/Low Later you can use “scale of 1 to 10” or biz value

Example:
REQ V T Vol. B P D Pri Notes

R1 No BN0 10% F U Y L Stable; but need a test

R2 Yes XYZ1 50% F U N M Worried user may change
mind

R3 No 80% NF-Org S N H We don’t understand at all!

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 11

Requirements Elicitation

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Overview
What is “Elicitation”?
Who are the Players?
Where is the Information?
Techniques for eliciting requirements
How do you organize and prioritize the information?

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Elicitation
What is “Elicitation”?

From Webster’s online (my emphasis):
“Main Entry: elic·it
Pronunciation: i-'li-s&t
Function: transitive verb
Etymology: Latin elicitus, past participle of
elicere, from e- + lacere to allure
1:to draw forth or bring out (something latent or
potential) <hypnotism elicited his hidden fears>
2: to call forth or draw out (as information or a
response) <her remarks elicited cheers> “

Requirements Elicitation is the task of drawing out latent
information. Make explicit that which is known.

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Elicitation
Who are the players?

• Before you charge in front of the customer, you need to know
all the people involved in the process.
- Some are information sources, others stakeholders

• Sources:
- Users – The ‘end-user” that will use your software
o Note: This might be another system, so the representation may be

the Chief Architect of that other system.
- Buyers – The person responsible for acquiring your software and

applying it to the target problem
o Note buyer != user in many cases!

- Experts – “Outside” people who bring experience and/or domain
expertise to bear on your problem domain

• Consider getting an initial “wishlist” from each player so you
understand where s/he is coming from.

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Information Sources
Where is the information?

• People sources – “players” listed on previous slide
• Documentation

- Textbooks
- Training materials (online or printed)
- Reference works

• Ad hoc conversation and experience – “osmosis”
• The WWW

- The “Google” effect
- Discussion forums

How do you qualify and apply information from these sources?

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Elicitation Techniques
Techniques

• Individual Interviews
• Group Meetings
• Storyboarding / Prototyping
• Questionnaires
• Observation / Ethnography / User-centered design
• Perform research
• Joint Application Development (JAD)

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Interviews -1
Modality

• 2-way communication process
• Participants may be with User, Buyer, or Expert
• Structured versus Unstructured

How-to
• Set meeting expectations with interviewee a priority.
• Identify information targets to acquire.
• Meeting notes should be precise and undistilled.

- Do not pre-analyze up front.
- If possible, get interviewee signoff “for the record”.

• Time-sensitive: marathon sessions can lead to burnout and
hasty decisions that become chains later.

• Get permission to record.
• Verify data with second sources or repeat interview.

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Interviews -2
Pros

• Richest form of information expression and capture
• Get customer buy-in

Cons
• Time-intensive
• Social tensions – burnout, personality conflict, control
• Single-source of information
• Does the interviewee have “sign-off” authority?

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Group Meetings -1

Modality
• 2-way communication
• Participants may be groups of customers, cross-functional

teams, buyers, experts, focus groups, etc.
• Typically “semi-structured”

- Want structured activities to facilitate unstructured conversations!
- The “workshop” concept vs. the “brainstorming” concept
- May be facilitated by groupware

How-to
• Set your expectations and targets ahead as before.
• Scheduling: Can you get undisturbed time?
• Decide on the level of structure.

- Leave brainstorming sessions open for discovery.
- Plan the semi-structured tasks for “workshops”.

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Group Meetings -2
How-to (cont)

• Plan the meeting environment.
- Break-out rooms
- Collaborative tools
- Information capture tools

• Distribute meeting notes as before.
- Consider assigning action items (if possible)
- Consider establishing smaller followups – online tools?

Pros
• Groups can be self-reinforcing, build consensus
• “Real-time” requirements validation

Cons
• More complex to schedule and administer
• Social dynamics – who controls the meeting

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Storyboarding / Prototypes
Modality

• 2-way
• Participants are end users
• Provides a structure for individual or group interaction

- Storyboarding more conducive to small group interaction

How-to
• Develop functionality based on vague requirements.

- Throw-away code!
• Present to end user for direct feedback.
• Robustness of prototype needs only to be “sufficient to facilitate

effective user feedback”.
• Technology base is chosen based on RAD, not based on the

non-functional requirements.

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Storyboarding / Prototypes
Pros

• Making the solution “visible” provides you a precise means of
agreeing on things with the user.
- May also facilitate your design and test cases

Cons
• Cost to develop (need a RAD framework)
• May pigeon-hole user into early requirements commitments
• May pigeon-hole developers into early design commitments
• Throw-away solution becomes a BBOM

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Questionnaires
Modality

• 1-way communication
• May be anonymous
• Technology-assisted

How-to
• Determine your distribution list.
• Use careful vocabulary.
• Validate questions and answers – try not to show bias.
• Repeat questions to ensure consistency.
• Ensure results are quantifiable.

- One of the benefits is using technology to reach a large group of
stakeholders, so be sure you can aggregate results.

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Questionnaires
Pros

• Ability to reach a lot of stakeholders
• Objective, Quantifiable results
• Broad topic coverage
• Relatively fast
• Anonymity

Cons
• Ambiguity in questions
• Long time to design
• Poor response rates
• Restricted (rigidly structured) feedback

Lesson: Do not use in isolation, confirm data with secondary
methods.

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Perform Research
Modality

• “0-way” communication
• Guidance?

How-to
• Identify appropriate information sources.

- Market surveys
- Industry studies – association groups, market research, technical

standards organizations, research community
- Be wary of the “Google factor”!
o Get expert guidance!
o Research as a team for common understanding.

• Create a taxonomy of the technical and market space.
• Attempt to get feedback on your understanding.
• Learn the user/customer vocabulary and enhance

communication, not necessarily derive requirements!

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Perform Research
Pros

• 0-way means it can be planned and executed individually (or in
small teams).

• Understanding current practices facilitates other techniques.
Cons

• May build a bias toward one solution space
- You are not supposed to write your own requirements!

• Ability to assess the proper or best sources
• Time to tackle the learning curve

Again, goal is to learn enough to facilitate communication using
one of the other methods, not to write your own requirements!

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Observation
Also called “ethnography”
Modality

• 1-way communication
• Real-time vs. video capture vs. event capture
• Staged environment versus real environment

How-to
• Determine modality.

- Will you observe live or capture via video or some other
technology?

• Review organizational & regulatory policies, NDAs, etc.
• Prepare a debriefing memo.
• Determine a recording format and method.
• Embed into environment with minimal intrusion.

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Observation
Pros

• Observing how customer works allows you to see how the
technology benefits.

• Removes the 0th-order interpreter – the user
Cons

• Time-consuming
• Observee will not behave “naturally” (Hawthorne effect)
• Disruption to the workplace

To Note
• Ethnography is a well-known elicitation technique in research

circles, and may be suitable for inception.
• Requirements elicitation using ethnography is often too time-

consuming, too disruptive – simply too awkward.

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Observation
To Note (cont)

• A variant on embedded real-time observation is a staged
observation for HCI evaluation.
- Observe a user interacting with the system.
o Video
o Event tracking (mouse clicks, screen visit sequence, etc.)

- Not really “ethnography”
- Called “User-centered design” when designing a HCI

• Another variant on Observation is Apprenticing.
- The users train the BA on how to perform the job.
- BA then performs in that role for some time to learn first-hand the

issues for end users.
- Time-consuming but very effective

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Joint Application Design
Modality

• Multi-way: customers, users, designers, and experts
• A cross between group meetings and prototypes
• Similar to evolutionary style of concurrent development, except

the stakeholders are part of the development team
How-to

• Carefully assemble a team.
• Ensure roles are blurred – everyone is a peer and everyone’s

opinions are important. Design is not just for the designers.
• JAD sessions require a clear statement of the purpose of the

session and its goals.
• JAD sessions are usually run by a facilitator who keeps the

participants focused.
- Can have observers, but observers must remain silent according to

the rules of JAD.

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Joint Application Design

Pros
• Workshop-type feel

facilitates participation
• All stakeholders feel

ownership and teamwork
• All concerns laid out on the

table
Cons

• Requires a skilled facilitator
• Social issues – some

individuals may dominate
• Consensus building can be

difficult in a large group

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Elicitation Issues
“Yes, but…”

• Issue: Software is “Infinitely malleable”, so users continue to
add/morph features. A scope issue!

• Solution: Make the software “real” (prototype).
“Undiscovered Ruins”

• Issue: “the more you find the more that remain”
• Solution: Iterate!

“User and Developer”
• Issue: Communication gap between the two
• Solution: Burden is on the solution provider! Use multiple

techniques, reviews, and checks.

- These ideas are from Chapter 8. Leffingwell & Widrig. You should also read the Davis 2003
paper on elicitation concepts posted on the class website.

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Elicitation Summary

Elicitation and the Requirements Workflow
• Your deliverable is “uncovered” knowledge
• Format may or may not be important

- We are assuming not important yet. Natural language is fine.
• The responsibility of the BA
• Next steps involve documenting, organizing, prioritizing

requirements
• Reminders

- This is a “soft science” – there is no recipe for success.
- Iterate with the customer until you get convergence.
- Cross-check results with multiple people and methods.
- Understand what is volatile and what is enduring early!
- Do not burn the customer out! Do not burn yourself out!
- Do not over-commit or ask the customer to over-commit!

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 34

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 11:
Requirements Analysis
(Authored by Thomas Hilburn, Embry-Riddle
Aeronautical University)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Analysis and Modeling Basics
Analysis Report
Analysis and Modeling Issues
Analysis Process
Approaches to Analysis

• Structural Analysis
• Use Case Analysis
• OO Analysis

Topics

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Modeling Foundations -1

A software model is an abstract simplification of aspects or features of a
software component to help software engineers understand and
communicate aspects of the software to appropriate stakeholders.
Modeling Principles

• Model the Essentials – good models do not usually represent every
aspect or feature of the software under every possible condition. (e.g.,
how primitive data types will be implemented)

• Provide Perspective – modeling provides “views” of the software
under study using a defined set of rules for expression of the model
within each view. (e.g., structural and behavioral views of a system)

• Enable Effective Communications – models facilitate effective
communication of software information to and between project
stakeholders. (e.g., a design model can provide the basis for
integration planning.)

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Modeling Foundations -2

For our purposes, a software model is a description (textual,
graphical, or mathematical) of some aspect or element used in the
development of a software product.
Models in more traditional engineering fields have a long history of
use and evolution.

• What are some examples of models used in other engineering
fields?

• What are some examples of models used in software
engineering?

A good model
• consists of multiple views, describing different aspects of the

product
• makes use of abstraction and information hiding

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Modeling Foundations -3

Abstraction is a development approach that emphasizes essential
external features and behavior, and obscures details about internal
structure and logic.

• Abstraction is a basic concept in modern design and
development.

Information hiding is a concept for “abstracting” or hiding the details
of a module not needed by a user of a module.
Data encapsulation is collecting the essential features and
behavior of a data object into a single entity.

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Analysis

The purpose of requirements analysis is to take information
provided by the stakeholders, and analyze and model that
information so that

• the developers better understand the stakeholder needs and
requirements

• the functional and non-functional requirements can be specified
clearly, correctly, and completely

• there is solid foundation for design, construction, and testing of
the software product

During the requirements analysis phase we will build a
“conceptual model” for our system that will support effective
communication between users, domain specialists, and application
developers.

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Conceptual Model

A representation of the key concepts in a problem domain from
which a system’s functional requirements can be derived

• Elements of the conceptual model are sometimes referred to as
the “conceptual design”. Although it may contain components
of an eventual solution, its purpose is to better understand
“what” the software should to.

For our purposes, the conceptual model will contain the following:
• a context diagram
• a UI prototype
• a Use Case model
• a Conceptual Design (class diagrams and sequence diagrams)

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Analysis Process

What should it include?
• Purpose, Entry Criteria
• Phases

- Select Analysis Techniques
- …
- …
- Review and Revise Analysis Results
- Prepare and Submit Analysis Report

• Exit Criteria

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Analysis & Modeling Issues

How do we model the functional requirements for a software
system?

• Concentrate on the external behavior of a system.
- However, “internal” behavior must also be considered so that non-

user functional requirements can be determined.

How do we go from a requirements specification to design?
• This depends on the application domain and the analysis

methodology chosen?
How do we keep from making design decisions too early?

• Focus on the goal of “understanding” rather than “solving”.

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Analysis Models

There are lots of them:
• Structured Text
• Context Diagram
• User Stories
• Use Cases
• Data Flow Diagrams
• Entity Relationship Diagrams
• Interaction diagrams
• GUI Diagrams
• Data Dictionaries
• Decision Trees

• Dialog Maps
• Module Diagrams (class

diagrams, structure charts)
• State Transition Diagrams
• P-Specs
• Petri Nets
• Z Schemas
• Formulas (e.g., first order

logic, CSP, Temporal
Logic)

• …

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Context Diagram

In software engineering and systems engineering a Context
Diagram is a diagram that represents the Actors outside a system
that could interact with that system.
This diagram is the highest level view of a system.
Context diagrams can be developed with the use of two types of
building blocks:

• Entities (Actors): labeled boxes; one in the center representing
the system, and around it multiple boxes for each external actor

• Relationships: labeled lines between the entities and system

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

An Example Problem

Problem Statement: Develop an Automatic Banking System (ABS)
that will interact with banking customers, through an ATM, to
provide automated banking services (deposit money, withdraw
money, provide account information - balance, transaction
information, etc.).

• An ABS manager can create a new account or close-out an
existing account.

ABS

ABS system
manager

customer

money

service request

create
account

remove
account

ATM report
request

ATM report

transaction report

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

DigitalHome Context Diagram

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Modeling Principles

Requirements models help stakeholders better understand the
problem:

• Enable a user to understand how human-machine interaction
will occur.

• Provides means for requirements verification and validation.
• Supports clear, correct, precise, complete requirements

specification.
• Forms basis for development of software architecture and

design.
Need a basic understanding of the problem before requirements
modeling can begin.
Should use multiple views of requirements.
Where appropriate, requirements models should use
decomposition, abstraction and information hiding.

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Analysis Modeling

Static (Structural) Modeling
• models the system elements and their relationships without

regard to time
Dynamic (Behavioral) Modeling

• models how the system behavior changes over time
Data Modeling

• models the key data elements and their relationships
Popular Approaches

• Structural Analysis
• Object-Oriented Analysis
• Formal Modeling

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structural Analysis

A methodology used to build a system model that depicts
information flow and content

• Special notation and graphical symbols are used to describe
and partition the functionality of system.

Elements
• Data Flow Diagram (DFD)
• Data Dictionary (DD)
• Process Specification (P-Spec)
• Entity-Relationship Diagram (ERD)
• State Transition Diagram (STD)

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Data Flow Diagram

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Entity Relationship Diagram

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

State Transition Diagram

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structured Design

Transforms a requirements specification that was modeled using
structured analysis into a design

• based on DFD, ERD, DD, STD
Uses a Hierarchical Design Structure
Design Elements

• data dictionary (refined from DD in SRS)
• structure chart
• procedure design elements

- flow charts, tables, program design language (PDL)

Problem: The transformation from structured analysis to a design
architecture is not easy or natural:

• The analysis and design models are orthogonal.
• A technique called “transform mapping” is one popular

approach.

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structure Chart

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Object-Oriented Analysis
Object-oriented development can be viewed as an integration of
the functional-driven approaches (“structural” approaches) and the
data-driven approaches (for database systems).
Object-oriented analysis (OOA) is concerned with developing and
modeling software requirements that is:

• based on Objects from the problem domain
• the first step in an evolutionary refinement process that moves

from OO analysis to OO design to OO implementation
• a high-level conceptual description of how the solution will be

organized
OOA Elements

• Use Case Model
• Package/Class Diagrams
• Interaction Diagrams: Sequence, Collaboration
• State Diagram

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Unified Modeling Language (UML)

A standardized general-purpose modeling language used in object-
oriented software development
Developed by Grady Booch, Ivar Jacobson and Jim Rumbaugh at
Rational Software in the 1990s
Used to analyze, specify, design, construct and document the
artifacts of software-intensive systems
Tools

• ArgoUML – http://argouml.tigris.org/
• TOPCASE – http://www.topcased.org/
• Visual Paradigm – http://www.visual-paradigm.com/

http://argouml.tigris.org/
http://www.topcased.org/
http://www.visual-paradigm.com/

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Messages to Remember

Requirements analysis involves study, analysis and modeling of
the problem to be solved, in order to ensure effective requirements
specification.

The requirements model serves as a basis for requirements V&V
and development of system architecture and design.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 26

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 12:
Use Case Models
(Authored by Thomas Hilburn, Embry-Riddle
Aeronautical University)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Basics -1

In 1987, Ivar Jacobson [Jacobson 1992] introduced the use case
concept for modeling the behavior of a system.
Use case modeling is a technique that can help in the difficult task
of eliciting, analyzing and specifying requirements.

• Use cases are now widely used to model and analyze software
requirements.

• Some believe they should be the primary requirements
modeling tool, almost to the exclusion of other techniques.

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Basics -2

Use Case (UC): a structured statement of software functionality
• a representation of one or more functional software

requirements
• “the ways in which a user uses a system” [Jacobson 1992]
• “a collection of possible sequences of interactions between the

system under discussion and its external actors, related to a
particular goal.” [Cockburn 1997]

There are lots of different opinions, approaches, techniques, and
styles associated with use case modeling.

Use cases are most helpful in requirements elicitation and analysis.

Use cases are also helpful with system test planning.

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Basics -3

A use case represents an external view of interaction with a
system.
Use cases can be used to develop a system users manual.
Use cases are stories about using a system (that represent the
system functional needs).
Although use cases are often used in OO analysis and are a formal
part of the UML, they are not “object-oriented”.

• Use cases are “functional” in nature and work well with
functional focused development methodologies.

Use cases are like “black boxes”; they describe what the system
must do, not how it will do it.

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Basics -4

The number and granularity of use cases influences the time and
difficulty to understand, maintain, and manage the requirements.
Some of the advantages cited for use case modeling are:

• Use cases are a good communication tool between developers
and users, clients and domain experts.

• Use cases are a convenient way to capture and categorize the
behavior of a system.

• Use case modeling supports effective requirements elicitation.
Use case construction leads very naturally to questions and
research about unsupported assumptions and hidden
requirements.

• Use cases can be used to validate the behavior of a system
during and after development.

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Developing Use Case Model

Review customer need statement or other information about
functional requirements.

• In particular, for a class project, review the Need Statement and
Elicitation Report focusing on the user classes and user stories.

Determine the system boundary and the external entities (develop
a Context Diagram).
List the actors in the system. Candidate actors are:

• people that use the system
• other systems that use the system
• people that install, start up, operate, or maintain the system

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Diagram

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Name Format

Actor-Action-Object
• Actor: the role that a user (or another external entity) plays

with respect to the system
• Action: functionality requested by an actor
• Object: item acted on by an Actor

Example Name: CustomerDepositsMoney
• Or DepositMoney if the Actor is apparent or there are multiple

actors.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Goals and Actors

The use case goal represents the defining purpose of a use case.
It represents what is intended to be achieved by initiator of the use
case.

• e.g. a bank customer may have the goal of withdrawing money
from her account.

Actors are not only roles played by people, but may be
organizations, software, and machines. Actors can be classified as
follows:

• primary actor: the principal actor that calls on the system to
fulfill the UC goal (e.g., bank customer)

• supporting actor: an actor that provides a service to the system
(e.g., a bank accounts database that is external to the system)

• offstage actor: an actor that has an interest in the use case, but
is not primary or supporting (e.g., a bank examiner)

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Scenarios

Scenario: formatted description of the steps required for the
completion of a Use Case – to achieve the UC goal. One particular
story of using the system.
Main Scenario: a scenario that describes the successful completion
of the UC goal.

• It is possible for there to be more than one success scenario.
Alternate Scenario: a scenario that represents an alternate to the
main scenario that also achieves the UC goal.
A scenario that does not lead to the UC goal is called a failure
scenario.

• An exception is a condition that prevents successful completion
of the UC goal.

A given use case would typically be made up of multiple scenarios.

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Template 1

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Template 2

For the Actor Action and System Reaction fields, be careful about
the level of detail in the description:

• Include enough detail so that developers can understand the
meaning of the action or reaction.
- e.g. “Customer requests bank loan” would be better than “Customer

requests money”.
• There is no need, especially at an early stage, to include too

much detail.
- e.g. “Customer enters address” may be better than “Customer

enters street address, city name, state name, and zip code”

The Exceptions field would contain the conditions that would
required special handling by the system.

• In some approaches to use case modeling “exception handling”
is specified with alternate scenarios or scenario extensions.

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Template 3

The Use Cases Utilized field indicates structuring of a scenario so
that it is an extension of an existing use case, or by using “sub-
interaction”, where a system may react to some action by initiating
another use case.

• e.g., a use case of Customer_Login_Account might initiate a
use case of Manager_Checks_PIN.

Use case modeling is part of the evolving nature of requirements
elicitation, analysis and modeling; hence, in the early stages of use
case development, some items (such as Alternate Use Cases and
Use Cases Utilized) may not be clear or complete.
There is no standard UC template; a variety of styles and formats
are used.

• One popular alternative is to depict the scenario steps in a
single column, intermixing the actor action and the system
reaction.

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Description Example

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

DigitialHome
Use Case
Diagram 1

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Case Associations

Extension is an association between two use cases where the
functionality of some use cases is similar but could have some
deviations or additions depending on the scenario.

Inclusion is an association between use cases where there is a
chunk of functionality that is inclusive in multiple cases and can be
abstracted into a separate model and essentially "included" in other
use cases

Generalization is an association between use cases where the
basic functionality is the same, but specific implementation details
may differ

<<extend>>

<<include>>

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

DigitialHome
Use Case
Diagram 2

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

DigitalHome
Use Case
Scenario

Use Case ID: UC3
Use Case: Manage Month Plans
Goal: Manage the monthly plans which control the environment of a Digital Home.
Primary Actor: General User
Secondary Actor: DH Database
Pre:
1. User is logged into her/his DH account.
2. DH Main Page is displayed on the user display device.
Post:
3. Month Plan operation has been completed
4. DH Main Page is displayed on the user display device.
Main Success Scenario:

Step Actor Action Step System Reaction
1 Select Manage Month Plan option 2 Requests user to enter month and year
3 Enter month and year 4 Display month calendar
 5 Display “Which operation do you want to

perform:
a. Create a month plan.
b. Revise a month plan.
c. View a month plan.
d. Exit Month Plan Page

6A Select a. 7A Invoke UC 3.1
6B Select b. 7B Invoke UC 3.2
6C Select c. 7C Invoke UC 3.3
6D Select d. 7D continue

 8 Display DH Main Page
UC GUIs: DH Main Page, Thermostat Month Plan Page, Humidity Month Plan Page,
Security Month Plan Page, Power Switch Month Plan Page
Exceptions:
5. User fails to make an entry.
• Response: Timeout after 5 minutes and logout of system
6. Improper data entered (e.g., wrong data type or out of range data)
• Response: Prevented with GUI design (drop down lists, list boxes, bounded range

components, etc.)
Use Cases Utilized: UC-3.1, UC-3.2, UC-3.3
Notes and Issues: When the DH Technician sets up and configures a DH System, he/she
sets the default values for the system (see UC-1 Configure DH System)

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Review of Use Case Model -1

A thorough review of the Use Case model is critical.
• A major error in the UC model (if not detected early) can cause

major problems in later stages of development.
• Where possible, include customers, users, domain experts, and

other members of the development team as part of the review
group.

• Make up a checklist for the review and follow it carefully.
- The following slides will give you some ideas for the checklist.

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Review of Use Case Model -2

Use Case Coverage
• Each elicited functional requirement has at least one UC

designated.
- That is, all the UC goals taken together cover all of the functional

requirements.

Use Case Level and Granularity
• UCs are not at too low/detailed level
• UCs are not at too high/broad level
• The level of detail is consistent across the UCs.
• The number of UCs is appropriate for the size and complexity

of the system being developed.

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Review of Use Case Model -3

Use Case Template
• Each item in the UC Scenario template has been addressed.
• The Pre-Conditions and Post-Conditions represent system states that

are appropriate for the achievement of the UC goal
• The sequence of steps in the main success scenario correspond to

expected interaction between the actors and the system.
• The scenario does not require any non-domain information to be

understood.
• All functional elements concentrate on what the system should do and

not how it should be implemented.
• Any condition that could prevent a success scenario from being

completed is listed in the Exceptions field.
Use Case Diagram

• The UC Diagram includes all actors and UCs, and their correct
relationships

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Problems with Use Cases -1

Use in OO development
• Use Cases are part of the Unified Modeling Language and are

widely used in objected-oriented analysis.
• Since use cases are “function-centric”, there is a danger that

when UCs are used as part of OOA, an analyst might drift into
a functionally focused approach to development of the system.

The advantages of use case modeling can be lost in a sea of UC
explosion if there is not some control over the number of use
cases, their scope and their level of detail.

• A UC modeler should not lose sight of the UC model’s purpose
in organizing the description of system behavior and its role as
a communication tool between system stakeholders.

• As in other areas of software development, use abstraction,
modularity and information hiding to reduce complexity.

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Problems with Use Cases -2

When are you finished?
• The true answer might be not until the system is delivered.

When systems are developed iteratively, one could see
changes and enhancements to the UC model near the end of
the development life-cycle.

• However, if one is interested in some sort of quasi-closure at a
given stage of development, the test would be agreement from
the stakeholders that the UC model accurately depicts a
description of system behavior.

Scaling up for a larger system.
Too much emphasis on UI design details.

• Do not let UI design drive requirements analysis.
• At this stage simple mock-ups are fine.

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use Cases and Requirements

Functional requirements can be specified in a number of different
ways.

• Use Cases only
• Separate Use Case and SRS Documents
• Incorporate Use Cases in SRS as the organizing focus

For your project, you will document your Use Cases in the Analysis
Report and then organize the SRS around Ignite features and use
cases.
As part of the SRS development and review you need to insure
that the UCs and the functional requirements correlate.

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Messages to Remember

Use cases are an informal, but explicit way to specify the functional
requirements for a system.

The Use Case can be used to support system test planning and
the development of user manuals.

As in any software artifact a thorough review of the Use Case
model is necessary to insure it is correct and complete.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 27

Questions

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 13:
Security Requirements and
SQUARE Overview

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering

Introduction to SQUARE

SQUARE for Acquisition

Outline

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 4

Requirements Engineering

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering Issues

RE defects cost up to 200 times more once fielded than if caught in
requirements engineering.

Reworking defects consumes >50% of project effort.

>50% of defects are introduced in requirements engineering.

Takeaway: Errors during requirements engineering are costly!

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Problems

Requirements

• identification may not include relevant stakeholders

• analysis may or may not be performed

• specification are typically haphazard

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Effects of Requirements Problems

Bad requirements cause projects to
• exceed schedule
• exceed budget
• have significantly reduced scope
• deliver poor-quality applications
• deliver products that are not significantly used
• be cancelled

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

Have you seen examples of requirements problems that caused
projects to

• exceed schedule
• exceed budget
• have significantly reduced scope
• deliver poor-quality applications
• deliver products that are not significantly used
• be cancelled

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Requirements

Address security in a particular application

Are often ignored in the requirements elicitation process

Incur high costs when incorporated later

Must be addressed early

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Requirements Engineering Issues – Example

Stage
Critical
Bugs

Identified

Cost of
Fixing One

Bug

Cost of
Fixing All

Bugs

Requirements $139

Design $455

Coding $977

Testing 50 $7,136 $356,800

Maintenance 150 $14,102 $2,115,300

Total 200 $2,472,100

Stage
Critical
Bugs

Identified

Cost of
Fixing One

Bug

Cost of
Fixing All

Bugs

Requirements $139

Design $455

Coding 150 $977 $146,550

Testing 50 $7,136 $356,800

Maintenance $14,102

Total 200 $503,350

Cost of Fixing Vulnerabilities Later Cost of Fixing Vulnerabilities Early

As can be seen, identifying defects early in the lifecycle reduced
costs by nearly $2 million.

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Microsoft Security Lifecycle Results

Microsoft Windows: 45% Fewer Vulnerabilities in Windows Vista
Windows Vista was the first Microsoft operating system to benefit from the
SDL. After the first year, Windows Vista had 45% fewer vulnerabilities
than Windows XP. In a comparison of security vulnerabilities, Windows
Vista also fares better than competing operating systems.
Microsoft SQL Server: 91% Fewer Vulnerabilities in SQL Server 2005
SQL Server serves as an excellent example for security improvements
resulting from incorporating the SDL. Within the three years after release,
Microsoft has issued three security bulletins for the SQL Server 2005
database engine.

Reference:
http://www.microsoft.com/security/sdl/learn/measurable.aspx

http://www.microsoft.com/security/sdl/learn/measurable.aspx

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Requirements Methods -1

SQUARE

CLASP

Core Security Requirements Artifacts

SREP

Security Patterns

TROPOS

Others

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Requirements Methods -2

SQUARE
• Security Quality Requirements Engineering
• Nine-step process
• SQUARE-Lite
• SQUARE for Privacy
• SQUARE for Acquisition
• Can be used with existing requirements engineering process

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 14

SQUARE Methodology

What is it? Who is involved?

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SQUARE

Developed by the CERT Division at the SEI, Carnegie Mellon
University

Stepwise methodology for eliciting, categorizing, and prioritizing
security requirements for information technology systems and
applications

Security requirements are quality attributes

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SQUARE

Who is involved?
• stakeholders of the project
• requirement engineers with security expertise

In SQUARE, security requirements are
• treated at the same time as the system's functional

requirements, AND
• specified in the early stages of the SDLC
• specified in similar ways as software requirements engineering

and practices
• determined through a process of nine discrete steps

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 17

SQUARE Steps

The Nine Steps

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SQUARE Steps

1. Agree on definitions.

2. Identify assets and security goals.

3. Develop artifacts to support security requirements definition.

4. Assess risks.

5. Select elicitation technique(s).

6. Elicit security requirements.

7. Categorize requirements.

8. Prioritize requirements.

9. Inspect requirements.

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 1

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Agree on Definitions

• Requirements engineers and stakeholders
agree on a set of definitions.

• Process is carried out through interviews.

• Exit criteria: documented set of definitions

• Examples: non-repudiation, denial-of-service (DoS), intrusion, malware

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 2

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Identify Assets and Security Goals

• Identify assets to be protected in the system.
• Goals are required to identify the priority and

relevance of security requirements.
• Security goals must support the business goal.
• Goals are reviewed, prioritized, and documented.
• Exit criteria: one business goal, several security goals

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 3

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Develop Artifacts

• Collect or create artifacts that will facilitate generation
of security requirements.

• Jointly verify their accuracy and completeness.

• Examples: system architecture diagrams, use/misuse
case scenarios/diagrams, attack trees, templates and
forms

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 4

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Perform Risk Assessment

• Identify threats to the system and its vulnerabilities.

• Calculate likelihood of their occurrence. Classify them.
This will also help in prioritizing requirements later.

• Risk expert might be required.

• Exit criteria: documentation of all threats, their
likelihood and classifications

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 5

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Select Elicitation Technique

• Select appropriate technique for the number and
expertise of stakeholders, requirements engineers,
and size and scope of the project.

• Techniques: structured/unstructured interviews,
accelerated requirements method (ARM), soft
systems methodology, issue based information
systems (IBIS), Quality Function Deployment

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 6

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Elicit Security Requirements
(Heart of SQUARE)

• Execute the elicitation technique.

• Avoid non-verifiable, vague, ambiguous requirements.

• Concentrate on what, not how.
Avoid implementations and architectural constraints.

• Exit criteria: initial document with requirements

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 7

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Categorize Requirements

• Classify requirements into essential, non-essential,
system, software, or architectural constraints.

• Sample table:

System level Software level
Architectural
constraint

Reqt. 1
Reqt. 2

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 7 – Categorize Requirements Examples

Software Level: Users
cannot exceed their
access privileges.

System Level: The
system is required to
have strong
authentication
measures in place at all
system
gateways/entrance
points.

Architectural
Constraints: The
system should be able
to support the
capabilities of a
distributed network.

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 8

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Prioritize Requirements

• Use risk assessment and categorization results to
prioritize requirements.

• Prioritization techniques: Triage, Win-Win,
Analytical Hierarchy Process

• Requirements engineering team should produce a
cost-benefit analysis to aid stakeholders.

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 9

1 2 3 4 5 6 7 8 9

Def. Goals Artifacts Risk Technique Elicit Categorize Prioritize Inspect

Requirements Inspection

• Inspection aids in creating accurate and verifiable
security requirements.

• Look for ambiguities, inconsistencies, mistaken
assumptions.

• Fagan inspections / peer reviews

• Exit criteria: all requirements verified and documented

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Approach

The SQUARE process
• takes about three months calendar time to complete
• has been implemented in several case studies

SQUARE-Lite
• Agree on definitions.
• Identify assets and security goals.
• Perform risk assessment
• Elicit security requirements.
• Prioritize requirements.

SQUARE-Lite has been implemented in one case study.

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Traceability in the SQUARE Tool

Assets Security Goals

Security
Requirements

Business Goal

Test Cases

Risks/Threats

Misuse Cases Use Cases

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 31

Summary

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

SQUARE – Security Quality Requirements Engineering

Nine steps:
(1) agree on definitions
(2) identify assets and security goals
(3) develop artifacts
(4) assess risks
(5) select elicitation technique(s)

SQUARE-Lite, P-SQUARE, A-SQUARE

(6) elicit security requirements
(7) categorize requirements
(8) prioritize requirements
(9) inspect requirements

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Additional Resources

R. Anderson – Home Page
http://act-r.psy.cmu.edu/people/ja/

Mary Shaw – Research Activities
http://spoke.compose.cs.cmu.edu/shaweb/r/research.htm

http://act-r.psy.cmu.edu/people/ja/
http://spoke.compose.cs.cmu.edu/shaweb/r/research.htm

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Additional Resources

BSI content on requirements engineering
https://buildsecurityin.us-cert.gov/articles/best-
practices/requirements-engineering

SQUARE Technical Report – SEI web site
www.sei.cmu.edu/pub/documents/05.reports/pdf/05tr009.pdf

SQUARE Case Study Reports – SEI web site
“Integrating Security and Software Engineering”
IDEA Group Publishing

www.idea-group.com
SQUARE-Lite

http://resources.sei.cmu.edu/asset_files/SpecialReport/2008_003
_001_14912.pdf

https://buildsecurityin.us-cert.gov/articles/best-practices/requirements-engineering
http://www.sei.cmu.edu/pub/documents/05.reports/pdf/05tr009.pdf
http://www.idea-group.com/
http://resources.sei.cmu.edu/asset_files/SpecialReport/2008_003_001_14912.pdf

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SQUARE Demo Video

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=73347

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=73347

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 36

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 14:
Artifacts to Support
Cybersecurity Requirements

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Develop Artifacts
(corresponds to SQUARE Step 3)
Types of artifacts to collect

• System architecture diagrams
(should exist for the project)

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Develop Artifacts -1

Types of artifacts to collect
• Use case scenarios/ diagrams (should exist for the project)

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Develop Artifacts -2

Types of artifacts to collect
• Misuse case scenarios/ diagrams (exemplar misuse cases)

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Develop Artifacts -3

Types of artifacts to collect
• Attack trees

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 7

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 15:
SQUARE for Acquisition

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Background

Introduction to A-SQUARE

Three Cases for Square for Acquisition
(A-SQUARE)

Summary and further work

Class Exercise

Questions

Outline

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 4

Background

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Background

Current efforts in the field of software acquisition

OWASP – open web application security project
COTS – commercial off the shelf

OWASP*: Provides
guidance for
contract language
that can be used in
acquisition

Common Criteria
approach: Provides
detailed guidance on
how to evaluate a
system for security

Questionnaires:
Provide insight and
help evaluate usage
of COTS* products
by potential
companies

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is Acquisition?

Acquisition: The process of obtaining a system, software product,
or software service. Software products may include commercial-off-
the-shelf (COTS) products, modified-off-the-shelf (MOTS)
products, open source products, or fully developed products.

The above definition was derived from these references:

Software & Systems Engineering Standards Committee, IEEE Computer Society. ISO/IEC
12207, IEEE Std. 12207-2008, Systems and Software Engineering - Software Life Cycle
Processes, Second Edition. IEEE Computer Society, 2008.

Software & Systems Engineering Standards Committee, IEEE Computer Society. IEEE Std.
1062, IEEE Recommended Practice for Software Acquisition. IEEE Computer Society, 1998.

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Need for SQUARE

Current problems:
• Lack of control on security requirements of the product by the

acquiring company
• Current work lacks level of detail needed, which is specific to

security requirements
Benefits of adapting SQUARE for Acquisition:

• Can be easily tailored and modified for various acquisition
scenarios

• Well-defined process framework with clear roles and
responsibilities defined for each of the stakeholders

• A-SQUARE helps address security requirements early in the
project

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Recap of the SQUARE Process

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Introduction to A-SQUARE

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A-SQUARE: Three Cases

Case 1 – acquisition organization has typical client role for new
software

Case 2 – acquisition organization does requirements specification

Case 3 – acquisition organization is purchasing COTS software

ContractorAcquisition Org.

Contractor

Acquisition Org. COTS

Acquisition Org.

Requirements

Requirements

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 1

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A-SQUARE: Case 1 Introduction

Nature of software acquisition:
• contractor is responsible for the requirements definition
• contractor should be on board and the contract is awarded
• acquisition organization plays a typical client role

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 1: Process Workflow

Acquisition Organization
•Agree on definitions

•Identify assets and
security goals

Contractor

•Develop artifacts

•Perform risk assessment

•Select elicitation
techniques

•Elicit security
requirements

•Categorize requirements

•Prioritize requirements

•Review requirements

Joint activities

•Review of final
requirements

Steps 1- 2 of
SQUARE

Steps 3-9 of
SQUARE

Additional step
introduced

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 1: Important Points

The client has no formal role in requirements elicitation for the
project.

The contractor uses SQUARE as the driving process framework for
identifying security requirements.

The additional step (as shown in workflow) may not be needed if
both the parties work together.

Joint activities

• Review of final
requirements

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 1: Compressed Workflow

In the event that the client is unaware of the requirements
engineering process, the resultant workflow is compressed as
shown here.

Acquisition
Organization

• Agree on
definitions

• Identify
security goals
and assets

Contractor

• Identify
security
requirements

Joint activities

• Review of final
requirements

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 2

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A-SQUARE: Case 2 Introduction

Nature of software acquisition:
• acquisition organization specifies requirements as part of

request for proposal (RFP)
• original SQUARE should be used by the contractor
• requirements specified will have relatively high-level security

requirements

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 2: Important Points

The process workflow is similar to the nine-step SQUARE process.
Level of detail in the requirements definition is crucial.

• Too much detail can constrain the contractor.
• The contractor needs some flexibility in defining the

requirements.
• The exit criteria for this process is the final review and approval

of the requirements by both parties.

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 3

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A-SQUARE: Case 3 Introduction

Nature of software acquisition
• acquisition of COTS products

What is COTS?
• computer software products that are ready-made and available

for use
• serve as good alternatives for in-house developments

Benefits of using COTS
• applications can be built “out-of-the-box”
• improves overall productivity and reduces company costs

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A-SQUARE: Case 3 Introduction

Examples of well-known COTS applications acquired by
organizations

Spreadsheets Databases

Document
management

Systems
Emails

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Is There Really a COTS Security Problem?

Wasted time
Wasted money
Still no tool!

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step Input Techniques Participants Output
1 Agree on

definitions
Candidate definitions
from IEEE and other
standards

Structured
interviews, focus
group

Acquisition
organization –
stakeholders,
security specialists

Agreed-to
definitions

2 Identify assets
and security
goals

Definitions, candidate
goals, business
drivers, policies and
procedures, examples

Facilitated work
session, surveys,
interviews

Acquisition
organization –
stakeholders,
security specialists

Assets and
goals

3 Identify
preliminary
security
requirements

Assets and goals Work session Acquisition
organization –
security specialists

Preliminary
security
requirements

4 Review COTS
software
package
information and
specifications

Assets, goals,
preliminary security
requirements

Study security
features of various
packages and
documents them,
in a spreadsheet,
for example

Acquisition
organization –
security specialists,
COTS vendors

Spreadsheet of
security
features of
various
packages

A-SQUARE Case 3 – Steps 1-4

Process for acquiring COTS software

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step Input Techniques Participants Output
5 Finalize security

requirements
Preliminary security
requirements, features
of various packages

Work session – use
the spreadsheet to
refine and modify the
preliminary security
requirements to
arrive at a final set

Acquisition
organization –
security
specialists

Final security
requirements

6 Perform tradeoff
analysis

Final security
requirements,
spreadsheet of
security features

Tradeoff analysis of
COTS products
relative to final
security requirements

Acquisition
organization –
stakeholders,
security
specialists

Prioritized list of
COTS products
relative to security
requirements

7 Final product
selection

Prioritized list of
COTS products
relative to security,
other important COTS
product features

Tradeoff analysis Acquisition
organization –
stakeholders

Final COTS
product selection

A-SQUARE Case 3 – Steps 5-7

Process for acquiring COTS software

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 3: Important Points

Prioritization
• Security requirements need to be prioritized together with other

requirements when acquiring COTS software.

Tradeoff
• Tradeoffs and compromises might have to be made since the

software might not meet all the security goals of the organization.

Review
• Reviewing the requirements may help the acquiring organization to

identify important security requirements.

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Future Vision – A New Scenario

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

Do you focus more on features or quality factors when you acquire
a COTS product?

Do you consider security when you buy a COTS product? For
yourself? Your organization?

Would you change anything in the future?

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary and Further Work

A-SQUARE helps identify security requirements early into the
project.

It can reduce the risk associated with software acquisition.

Prototype A-SQUARE tool developed by CMU MSIT Team – robust
tools are needed

Application of A-SQUARE on projects would help:
• support acquisition organizations
• validate the practices of A-SQUARE
• understand the tailoring needed

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Additional Resources
Allen, Julia H., Barnum, Sean, Ellison, Robert J., McGraw, Gary, & Mead,
Nancy R. Software Security Engineering: A Guide for Project Managers.
Addison Wesley Professional, 2008. (Available from Amazon.com.)
U.S. Department of Homeland Security. Build Security In: Requirements
Engineering. https://buildsecurityin.us-cert.gov/daisy/adm-bsi/articles/best-
practices/requirements.html
IDEA Group Publishing. http://www.idea-group.com
Mead, Nancy R., Hough, Eric, & Stehney II, Ed. Security Quality
Requirements Engineering (CMU/SEI-2005-TR-009). Software
Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm
Mead, Nancy R. “Identifying Security Requirements Using the Security
Quality Requirements Engineering (SQUARE) Method” Integrating
Security and Software Engineering: Advances and Future Visions. Edited
by H. Mouratidis and P. Giorgini. Idea Group, pp. 44-69, 2006 (ISBN: 1-
59904-147-2).

https://buildsecurityin.us-cert.gov/daisy/adm-bsi/articles/best-practices/requirements.html
http://www.idea-group.com/
http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Additional Resources
SQUARE case study reports:

• Gayash, Ashwin, Viswanathan, Venkatesh, & Padmanabhan Deepa.
Advisor: Nancy R. Mead. SQUARE-Lite: Case Study on VADSoft
Project (CMU/SEI-2008-SR-017). Software Engineering Institute,
Carnegie Mellon University, 2008.
http://www.sei.cmu.edu/library/abstracts/reports/08sr017.cfm

• Hough, Eric, Ojoko-Adams, Don, Chung, Lydia, & Hung, Frank.
Security Quality Requirements Engineering (SQUARE): Case Study
Phase III (CMU/SEI-2006-SR-003). Software Engineering Institute,
Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/library/abstracts/reports/06sr003.cfm

• Panusuwan, Varokas & Batlagundu Prashanth. Faculty Advisor:
Nancy Mead. Privacy Risk Assessment Case Studies in Support of
SQUARE (CMU/SEI-2009-SR-017). Software Engineering Institute,
Carnegie Mellon University, 2009.
http://www.sei.cmu.edu/library/abstracts/reports/09sr017.cfm

http://www.sei.cmu.edu/library/abstracts/reports/08sr017.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06sr003.cfm
http://www.sei.cmu.edu/library/abstracts/reports/09sr017.cfm

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 16:
Risk Analysis for Software
Assurance (Part 1)
(Developed by Christopher Alberts, SEI)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Concepts

Two Approaches for Analyzing Risk

Security Engineering Risk Analysis (SERA)
Concepts

Summary

Topics

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 4

Risk Concepts

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Assurance1

Application of technologies and processes to achieve a required
level of confidence that software systems and services

• Function in the intended manner
• Are free from accidental or intentional vulnerabilities
• Provide security capabilities appropriate to the threat

environment
• Recover from intrusions and failures

We will examine risk management in a software assurance context.

1 SEI Software Assurance Curriculum Project. Software Assurance Curriculum Project Volume I: Master of
Software Assurance Reference Curriculum (CMU/SEI-2010-TR-005). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2006. http://www.sei.cmu.edu/reports/10tr005.pdf

http://www.sei.cmu.edu/reports/10tr005.pdf

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is Risk?

The probability of suffering harm or loss
A measure of the likelihood that an event will lead to a loss coupled
with the magnitude of the loss
Risk requires the following conditions:1

• A potential loss
• Likelihood
• Choice

1. Charette, Robert N. Application Strategies for Risk Analysis. New York, NY: McGraw-Hill Book Company, 1990.

Consequence
(Loss)

Potential Event

Condition

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Management Activities

Assess risk
• Transform the concerns people have

into distinct, tangible risks that are
explicitly documented and analyzed

Plan for risk control
• Determine an approach for

addressing each risk; produce a
plan for implementing the approach

Control risk
• Deal with each risk by implementing

its defined control plan and tracking
the plan to completion

Assess

Pl
an

Control

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Issue/Problem

A condition that directly produces a loss or adverse consequence
• No uncertainty exists.
• The condition exists and is having a negative effect on

performance.
Issues can also lead to (or contribute to) other risks by

• Creating a circumstance that enables an event to trigger
additional loss

• Making an existing event more likely to occur
• Aggravating the consequences of existing risks

Consequence
(Loss)Condition

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Opportunity

The probability of realizing a gain
• Defines a set of circumstances that provides the potential for a

desired gain
• Enables an entity to improve its current situation relative to the

status quo
• Can require an investment or action to realize that gain (i.e., to

take advantage of the opportunity)
Pursuit of an opportunity can

• Produce new risks or issues
• Change existing risks or issues Consequence

(Gain)

Potential Event

Condition

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Strength

A condition that is driving an entity (e.g., project, system) toward a
desired outcome

• No uncertainty exists
• The condition exists and is having a positive effect on

performance (i.e., driving an entity toward a desired outcome)

Consequence
(Desired Outcome)

Condition

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Causal Chain of Conditions and Events

Risks, issues/problems, opportunities, and strengths are part of an interrelated causal
chain of conditions and events that must be managed.

Consequence

Consequence

Impact on
Objectives

Potential
Event

Condition

Consequence

Potential
Event

Condition

Potential
Event

Condition

Potential
Event

Condition Consequence

Condition Consequence

Potential
Event

Consequence

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Two Approaches for Analyzing Risk

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Two Type of Risk Analysis

Two distinct risk analysis approaches can be used when evaluating
systems:

1. Mission risk analysis
2. Event risk analysis

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Elements of Mission Risk

Consequence

Consequence

Impact on
Objectives

Potential
Event

Condition

Consequence

Potential
Event

Condition

Potential
Event

Condition

Potential
Event

Condition Consequence

Condition Consequence

Potential
Event

Consequence

Driver

Mission Risk

Root Causes

Mission risk is the probability of mission failure (i.e., not achieving key objectives).

Mission risk aggregates the effects of multiple conditions and events on a system’s
ability to achieve its mission.

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Elements of Event Risk

Consequence
(Loss)

Consequence

Impact on
Objectives

Potential
Event

Condition

Consequence

Potential
Event

Condition

Potential
Event

Condition

Potential
Event

Condition Consequence

Condition Consequence

Potential
Event

Consequence

Event Risk

Event risk is the probability that an event will lead to a negative consequence or loss.

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Engineering Risk
Analysis (SERA) Concepts

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Current State: High Residual Security Risk

Security in the acquisition and development of software-reliant
systems:

• Focus on meeting functional requirements
• Defer security to later lifecycle activities

Security features
• Addressed during system operation and sustainment
• Typically not engineered into a system

Software-reliant systems are typically deployed with significant
residual security risk.

• High residual security risk puts operational missions at risk.

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Goal: Reduce Residual Security Risk

Three main causes of operational security vulnerabilities:
• Design weaknesses
• Implementation/coding vulnerabilities
• System configuration errors

Design vulnerabilities are not easily addressed during operations.
Early detection and remediation of design vulnerabilities will reduce
residual security risk during operations.

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Complex Nature of Security Risk

Performing risk analysis early in lifecycle does not guarantee less
risk during operations.
Traditional security risk analyses cannot address complexity of
security attacks.

• Traditional Analysis
- Single threat actor exploits single vulnerability in single system to

cause an adverse consequence
• Current Reality

- Multiple actors exploit multiple vulnerabilities in multiple systems as
part of a complex chain of events.

Traditional methods can be ineffective at analyzing complex
security attacks.

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Engineering Risk Analysis (SERA)

Assesses operational security risks early in the software lifecycle
• Requirements
• Architecture
• Design

Employs structured, systematic risk analysis to handle the complex
nature of security risk
Goal:

• To identify and address design weaknesses early in the
lifecycle (i.e., build security in)

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

SERA Method

1. Establish
operational context.

2. Identify risk.

3. Analyze risk.

4. Determine control
approach.

5. Develop control
plan.

Mission Thread Worksheet

Risk Identification Worksheet

Risk Evaluation Criteria Risk Analysis Worksheet

Control Approach Worksheet

Control Plan Worksheet

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Establish Operational Context (Task 1)

Target of the analysis (e.g., the software application or system that
is being assessed) is determined initially.

The operational environment for the target is characterized to
establish baseline operational performance.

Security risks are analyzed in relation to this baseline.

Sub-tasks:
• Set scope of risk analysis.
• Define workflow/mission thread.

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 1 Questions: Set Scope of Risk Analysis

What technology/system is the focus of the analysis?

Which workflows or mission threads does the target support?

Which workflow or mission thread will be included in the security
risk analysis?

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 1 Questions: Define Workflow/Mission Thread

What are the mission and objective(s) of the workflow/mission
thread?
What steps are required to complete the workflow/mission thread?

• Who or what (e.g., person, technology) performs each step in
the workflow/mission thread?

• What technologies (e.g., systems, applications, software,
hardware) support each step in the workflow/mission thread?

How does the target of the analysis support the workflow/mission
thread?

• How does the target of the analysis interface with other
technologies?

• What is the flow of data in relation to the target of the analysis?

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Wireless Emergency Alerts (WEA) Service

WEA is a major component of the Federal Emergency
Management Agency (FEMA) Integrated Public Alert and Warning
System (IPAWS).

• Enables federal, state, territorial, tribal, and local government
officials to send targeted text alerts to the public via commercial
mobile service providers (CMSPs)

• Customers of participating wireless carriers with WEA-capable
mobile devices will automatically receive alerts in the event of
an emergency if they are located in or travel to the affected
geographic area.

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Swimlane Diagram for the WEA Service

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Mission Thread -1

Step Supporting Technologies

Alert Originating System (AOS) operator
attempts to log on to the AOS.

• Server (valid accounts/authentication
information)

• Logon application
• Communications between logon

software/ server/AOS
AOS logon activates auditing of the
operator’s session.

• Auditing application
• Communications from accounts to

auditing application
• Local/remote storage devices

AOS operator enters alert/cancel/update
message with status of “actual.”

• Alert scripts
• Graphical user interface (GUI) application
• Communications between GUI application

and alert-generation software (including
server and application)

AOS converts message to Common
Alerting Protocol (CAP) compliant format.

• Conversion application

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Mission Thread -2

Step Supporting Technologies

CAP-compliant message is signed by two
people.

• Signature entry application
• Signature validation application
• Public/private key pair for every user

AOS transmits message to the IPAWS
OPEN Gateway.

• Application that securely connects to
IPAWS

• AOS and IPAWS

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Identify Risk (Task 2)

Security concerns are transformed into distinct, tangible risk
scenarios that can be described and measured.
Sub-tasks:

• Identify threat.
• Establish consequence.
• Identify enablers.
• Document risk statement.

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Security Risk Components

Consequence
(Loss)

Potential Event

Condition

Threat

Enablers

Consequence

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 2 Questions: Identify Threat

What scenarios are putting the target at risk?
• The actor poses as another actor or entity.
• Information or code is modified.
• Sensitive or proprietary information is viewed by the actor or other

individuals.
• Access to important information or services is interrupted, temporarily

unavailable, or unusable.
• Information is destroyed or lost.
• The actor (human) denies having performed an action that other

parties can neither confirm nor contradict.
• The actor or other gains system access and privileges that he or she

is not supposed to have.
Who or what is the source of the risk?
What is the motive of the source (if applicable)?
How is the target affected?

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Threat

An outside attacker with malicious intent obtains a valid certificate
and uses it to send an illegitimate CAP-compliant message that
sends people to a dangerous location.

Threat components :
• Actor—a person with an outsider’s knowledge of the

organization
• Motive—malicious intent
• Action—the actor obtains a valid certificate and uses it to send

an illegitimate CAP-compliant message that sends people to a
dangerous location

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 2 Question: Establish Consequence

If the threat occurs, what impacts might ensue?
• Health and safety issues
• Financial losses
• Productivity loses
• Loss of reputation
• Other

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Consequence

People could be put in harm’s way, resulting in injuries and death.

Alert originators and state approvers could be held liable for
damages.

The reputation of WEA could be damaged.

The reputations of alert originators could be damaged.

Future attacks could become more likely (i.e., copy-cat attacks).

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 2 Question: Identify Enablers

What conditions or circumstances are enabling the risk to occur?
• Organization, policy, or procedure weaknesses
• Technical weaknesses or vulnerabilities
• Actions of organizations staff (e.g., IT staff, users)
• Actions of collaborators or partners
• Interfaces of systems
• Data flows
• Software or system design
• Other

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Enablers -1

A valid certificate could be captured by an attacker.
• Certificates are sent to recipients in encrypted email. This email

is replicated in many locations, including
- Computers of recipients
- Email servers
- Email server/recipient computer back-ups
- Off-site storage of backup tapes

• The attacker could compromise the Emergency Operations
Center or vendor to gain access to the certificate (e.g., through
social engineering).

• Limited control over the distribution and use of certificates could
enable an attacker to obtain access to a certificate.

Unencrypted certificates could be stored on recipient’s systems.
Management of certificates is performed manually.

37Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Enablers -2

An Emergency Operations Center’s certificate would provide an
attacker with access to all IPAWS capabilities.

The knowledge of what constitutes a CAP-compliant message is
publicly documented.

The number of vendors that provide Alert Originating System
(AOS) software is small. Each vendor controls a large number of
certificates. A compromised vendor could provide an attacker with
many potential targets.

38Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 2: Risk Statement

A risk statement is a succinct and unique description of a risk.
Risk statements typically describe

• A circumstance with the potential to produce loss (i.e., threat)
• The loss that will occur if that circumstance is realized (i.e.,

consequence)
The if-then format is often used to capture a risk.

• The if part of the statement describes the threat.
• The then part conveys a summary of the consequences.

39Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Risk Statement

If an outside attacker with malicious intent obtains a valid certificate
and uses it to send an illegitimate CAP-compliant message that
sends people to a dangerous location, then health, safety, legal,
financial, and reputation consequences could result.

40Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Risk Scenario

41Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 17:
Risk Analysis for Software
Asurance (Part 2)
(Developed by Christopher Alberts)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Analyze Risk (Task 3)

Each risk is analyzed in relation to predefined criteria.
Sub-tasks:

• Establish probability.
• Establish impact.
• Determine risk exposure.

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 3 Questions: Establish Probability

What is the probability that the risk will occur?
What is the rationale for your estimate of the risk’s probability?

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Probability Criteria

Value Definition Context/Guidelines/Examples

Frequent (5) The scenario occurs on numerous occasions or in
quick succession. It tends to occur quite often or at
close intervals.

≥ one time per month (≥ 12 / year)

Likely (4) The scenario occurs on multiple occasions. It tends to
occur reasonably often, but not in quick succession or
at close intervals.

Occasional (3) The scenario occurs from time to time. It tends to
occur “once in a while.”

~ one time per 6 months (~ 2 / year)

Remote (2) The scenario can occur, but it is not likely to occur. It
has "an outside chance" of occurring.

Rare (1) The scenario infrequently occurs and is considered to
be uncommon or unusual. It is not frequently
experienced.

≤ one time every 3 years (≤ .33 / year)

		Value

		Definition

		Context/Guidelines/Examples

		Frequent (5)

		The scenario occurs on numerous occasions or in quick succession. It tends to occur quite often or at close intervals.

		≥ one time per month (≥ 12 / year)

		Likely (4)

		The scenario occurs on multiple occasions. It tends to occur reasonably often, but not in quick succession or at close intervals.

		

		Occasional (3)

		The scenario occurs from time to time. It tends to occur “once in a while.”

		~ one time per 6 months (~ 2 / year)

		Remote (2)

		The scenario can occur, but it is not likely to occur. It has "an outside chance" of occurring.

		

		Rare (1)

		The scenario infrequently occurs and is considered to be uncommon or unusual. It is not frequently experienced.

		≤ one time every 3 years (≤ .33 / year)

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Probability

Probability: Rare
Rationale:

• This risk requires that a complex sequence of events occurs.
• The attacker has to be highly motivated.
• An event that requires an alert to be issued must already be

imminent. People will likely verify WEA messages through other
channels. To make maximize the impact, the attacker will likely
take advantage of an impending event.

• WEA will need to have an established track record of success
for this risk to be realized. Otherwise, people might not be
inclined to follow the instructions provided in the illegitimate
CAP-compliant message.

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 3 Questions: Establish Impact

If the risk were to occur, what would its impact be?
What is the rationale for your estimate of the risk’s impact?

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Impact Criteria

Value Definition

Maximum (5) The impact on the organization is severe. Damages are extreme in nature. Mission failure has
occurred. Stakeholders will lose confidence in the organization and its leadership. The
organization either will not be able to recover from the situation, or recovery will require an
extremely large investment of capital and resources. Either way, the future viability of the
organization is in doubt.

High (4) The impact on the organization is large. Significant problems and disruptions are experienced by
the organization. As a result, the organization will not be able to achieve its current mission
without a major re-planning effort. Stakeholders will lose some degree of confidence in the
organization and its leadership. The organization will need to reach out to stakeholders
aggressively to rebuild confidence. The organization should be able to recover from the situation
in the long run. Recovery will require a significant investment of organizational capital and
resources.

Medium (3) The impact on the organization is moderate. Several problems and disruptions are experienced
by the organization. As a result, the organization will not be able to achieve its current mission
without some adjustments to its plans. The organization will need to work with stakeholders to
ensure their continued support. Over time, the organization will be able to recover from the
situation. Recovery will require a moderate investment of organizational capital and resources.

Low (2) The impact on the organization is relatively small, but noticeable. Minor problems and disruptions
are experienced by the organization. The organization will be able to recover from the situation
and meet its mission. Recovery will require a small investment of organizational capital and
resources.

Minimal (1) The impact on the organization is negligible. Any damages can be accepted by the organization
without affecting operations or the mission being pursued. No stakeholders will be affected. Any
costs incurred by the organization will be incidental.

		Value

		Definition

		Maximum (5)

		The impact on the organization is severe. Damages are extreme in nature. Mission failure has occurred. Stakeholders will lose confidence in the organization and its leadership. The organization either will not be able to recover from the situation, or recovery will require an extremely large investment of capital and resources. Either way, the future viability of the organization is in doubt.

		High (4)

		The impact on the organization is large. Significant problems and disruptions are experienced by the organization. As a result, the organization will not be able to achieve its current mission without a major re-planning effort. Stakeholders will lose some degree of confidence in the organization and its leadership. The organization will need to reach out to stakeholders aggressively to rebuild confidence. The organization should be able to recover from the situation in the long run. Recovery will require a significant investment of organizational capital and resources.

		Medium (3)

		The impact on the organization is moderate. Several problems and disruptions are experienced by the organization. As a result, the organization will not be able to achieve its current mission without some adjustments to its plans. The organization will need to work with stakeholders to ensure their continued support. Over time, the organization will be able to recover from the situation. Recovery will require a moderate investment of organizational capital and resources.

		Low (2)

		The impact on the organization is relatively small, but noticeable. Minor problems and disruptions are experienced by the organization. The organization will be able to recover from the situation and meet its mission. Recovery will require a small investment of organizational capital and resources.

		Minimal (1)

		The impact on the organization is negligible. Any damages can be accepted by the organization without affecting operations or the mission being pursued. No stakeholders will be affected. Any costs incurred by the organization will be incidental.

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Impact

Impact: High-Maximum
Rationale:

• The impact will ultimately depend on the severity of the event
that is about to occur.

• Health and safety damages could be severe, leading to
potentially large legal liabilities.

• The reputation of WEA could be severely damaged beyond
repair.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 3 Question: Determine Risk Exposure

Based on the estimated values of probability and impact, what is
the resulting risk exposure?

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Risk Exposure Matrix

Risk Exposure Matrix

 Probability

 Rare
(1)

Remote
(2)

Occasional
(3)

Probable
(4)

Frequent
(5)

Im
pa

ct

Maximum
(5)

Medium
(3)

Medium
(3)

High
(4)

Maximum
(5)

Maximum
(5)

High
(4)

Low
(2)

Low
(2)

Medium
(3)

High
(4)

Maximum
(5)

Medium
(3)

Minimal
(1)

Low
(2)

Low
(2)

Medium
(3)

High
(4)

Low
(2)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Low
(2)

Medium
(3)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Low
(2)

		Risk Exposure Matrix

		

		

		Probability

		

		

		Rare

(1)

		Remote

(2)

		Occasional

(3)

		Probable

(4)

		Frequent

(5)

		Impact

		Maximum

(5)

		Medium

(3)

		Medium

(3)

		High

(4)

		Maximum

(5)

		Maximum

(5)

		

		High

(4)

		Low

(2)

		Low

(2)

		Medium

(3)

		High

(4)

		Maximum

(5)

		

		Medium

(3)

		Minimal

(1)

		Low

(2)

		Low

(2)

		Medium

(3)

		High

(4)

		

		Low

(2)

		Minimal

(1)

		Minimal

(1)

		Minimal

(1)

		Low

(2)

		Medium

(3)

		

		Minimal

(1)

		Minimal

(1)

		Minimal

(1)

		Minimal

(1)

		Minimal

(1)

		Low

(2)

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Risk Exposure

Risk Exposure Matrix

 Probability

 Rare
(1)

Remote
(2)

Occasional
(3)

Probable
(4)

Frequent
(5)

Im
pa

ct

Maximum
(5)

Medium
(3)

Medium
(3)

High
(4)

Maximum
(5)

Maximum
(5)

High
(4)

Low
(2)

Low
(2)

Medium
(3)

High
(4)

Maximum
(5)

Medium
(3)

Minimal
(1)

Low
(2)

Low
(2)

Medium
(3)

High
(4)

Low
(2)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Low
(2)

Medium
(3)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Low
(2)

Current
Probability: Rare

Current Impact:
High-Maximum

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Determine Control Approach (Task 4)

A strategy for controlling each risk is determined based on
• Predefined criteria
• Current constraints (e.g., resources and funding available for control

activities)
Control approaches for security risks include the following:

• Accept—If a risk occurs, its consequences will be tolerated.
• Transfer—A risk is shifted to another party (e.g., through insurance or

outsourcing).
• Avoid—Activities are restructured to eliminate the possibility of a risk

occurring.
• Mitigate—Actions are implemented in an attempt to reduce or contain

a risk.
Sub-tasks:

• Prioritize risks.
• Select control approach.

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 4 Question: Prioritize Risks

Which risks are of highest priority?
• Use impact as the primary factor for prioritizing security risks.

- Risks with the largest impacts are deemed to be of highest priority.
• Use probability as the secondary factor for prioritizing security

risks.
- Probability is used to prioritize risks that have equal impacts.
- Risks of equal impact with the largest probabilities are considered to

be the highest priority risks.

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Prioritized Risk Spreadsheet

ID Risk Statement Impact Prob Risk Exp

1 If an outside attacker with malicious intent
obtains a valid certificate and uses it to send an
illegitimate CAP-compliant message that directs
people to a dangerous location, then health,
safety, legal, financial, and reputation
consequences could result.

High-Max Rare Low-Med

3 If an insider with malicious intent spoofs the
identity of a colleague and sends an illegitimate
CAP-compliant message, then individual and
organizational reputation consequences could
result.

Med Rare-
Remote

Min-Low

2 If malicious code prevents an operator from
entering an alert into the Alert Originating
System (AOS), then health, safety, legal,
financial, and productivity consequences could
result.

Low-Med Remote Min-Low

4 If the internet communication channel for the
AOS is unavailable due to a cybersecurity
attack on the internet service provider, then
health and safety consequences could result.

Low-Med Remote Min-Low

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 4 Questions: Select Control Approach

What approach will be used to control the risk?
• Accept
• Transfer
• Avoid
• Mitigate

What is the rationale for choosing that approach?

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Control Approach

Control approach: Mitigate
Rationale:

• This risk could cause severe damages if it occurs, which makes
it a good candidate for mitigation.

• Mitigations for this risk will be relatively cost effective.

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Risk Spreadsheet with Control Approach

ID Risk Statement Impact Prob Risk Exp Control Approach

1 If an outside attacker with malicious intent obtains a
valid certificate and uses it to send an illegitimate
CAP-compliant message that directs people to a
dangerous location, then health, safety, legal,
financial, and reputation consequences could result.

High-Max Rare Low-Med Mitigate

3 If an insider with malicious intent spoofs the identity of
a colleague and sends an illegitimate CAP-compliant
message, then individual and organizational
reputation consequences could result.

Med Rare-
Remote

Min-Low Mitigate

2. If malicious code prevents an operator from entering
an alert into the Alert Originating System (AOS), then
health, safety, legal, financial, and productivity
consequences could result.

Low-Med Remote Min-Low Mitigate

4 If the internet communication channel for the AOS is
unavailable due to a cybersecurity attack on the
internet service provider, then health and safety
consequences could result.

Low-Med Remote Min-Low Mitigate

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Develop Control Plan (Task 5)

A control plan is defined and documented for all security risks that
are not accepted (i.e., risks that will be mitigated, transferred, or
avoided).
Sub-tasks:

• Review data.
• Establish control requirements.

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 5: Review Data

Operational context from Task 1:
• Mission and objective(s) of the workflow/mission thread
• Steps required to complete the workflow/mission thread
• Technologies (e.g., systems, applications, software, hardware) that

support the workflow/mission thread
• How the target of the analysis supports the workflow/mission thread
• How the target of the analysis interfaces with other technologies
• The flow of data in relation to the target of the analysis

Risk data:
• Threat, enablers, and consequences from Task 2
• Impact and rationale, probability and rationale, and risk exposure from

Task 3
• Control approach and rationale from Task 4

Risk spreadsheet

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 5 Questions: Establish Control Requirements -1

Transfer:
• What can be done to transfer the risk?
• How can the risk be shifted to another party?
• How will you know that the transfer works? Will you be

adversely affected if the other party ignores the transfer?
Avoid:

• What can be done to avoid the risk?
• How can activities be restructured [or requirements altered] to

eliminate the possibility of the risk occurring?

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Task 5 Questions: Establish Control Requirements -2

Mitigate:
• What can be done to mitigate the risk?
• Which actions can be implemented to reduce or contain the

risk?
- Monitor and Respond:
o What can be done to monitor and respond to the threat?

- Protect/Resist:
o What can be done to protect against or resist the threat? What

can be done to protect against or resist the consequence?
- Recover:
o What can be done to recover from the risk when it occurs?

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Mitigation Plan -1

Monitor and Respond
• IPAWS should send an alert receipt acknowledgement to an

email address designated in the Memorandum of Agreement
(MoA). (This approach uses an alternate communication
mechanism from the sending channel.) The alert originator
should monitor the IPAWS acknowledgements sent to the
designated email address. The alert originator should send a
cancellation for any false alerts that are issued.

• The alert originator should designate a representative for each
distribution region to monitor for false alerts. The representative
should have a handset capable of receiving alerts that are
issued. If a false alert is issued, the designated representative
would receive the alert and should then initiate the process for
sending a cancellation for the false alert.

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Mitigation Plan -2

Protect
• The alert originating system should use strong security controls to

protect certificates.
- Access to certificates should be monitored.
- Encryption controls should be used for certificates during transit and

storage.
- Access to certificates should be limited based on role.

• All alert transactions should have controls (e.g., time stamp) to ensure
that they cannot be rebroadcast at a later time. (Note: This
requirement requires that the sender time stamps the alert
appropriately. The receiver of the alert would need to check the time
stamp to determine whether the alert is legitimate or a relay of a
previous alert.)

• Certificates should expire and be replaced on a periodic basis.
• The alert originator should provide user training about security

procedures and controls.

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Mitigation Plan -3

Protect (cont.)
• Certificates should expire and be replaced on a periodic basis.
• The alert originator should provide user training about security

procedures and controls.

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Mitigation Plan -4

Recover
• The alert originator should quickly issue a cancellation before

people have a chance to respond to the false alert (i.e., before
they have a chance to go to the dangerous location). This might
require alert originators to provide additional training and to
conduct additional operational exercises.

• The alert originator should notify FEMA to determine how to
cancel the compromised certificate.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 27

Summary

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Key Points -1

The basic goal of risk analysis is to provide decision makers
• With the information they need
• When they need it
• In the right form

If decisions are not influenced by risk analysis activities, then risk
analysis provides no added value.
Risks, issues/problems, opportunities, and strengths are part of an
interrelated causal chain of conditions and events that must be
managed.

• Mission risk aggregates the effects of multiple conditions and
events on a system’s ability to achieve its mission.

• Event risk is the probability that an event will lead to a negative
consequence or loss.

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Key Points -2

The Security Engineering Risk Analyses (SERA) assesses
operational security risks early in the software lifecycle.

• Requirements
• Architecture
• Design

The SERA method employs structured, systematic risk analysis to
• Handle the complex nature of security risk
• Identify and address design vulnerabilities early in the lifecycle

(i.e., build security in)

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Publications and Resources -1

Cyber Security Engineering (CSE) Team Web Page
http://www.cert.org/sse/

Alberts, Christopher & Dorofee, Audrey. Mission Risk Diagnostic
(MRD) Method Description (CMU/SEI-2012-TN-005). Software
Engineering Institute, Carnegie Mellon University, 2012.

http://www.sei.cmu.edu/reports/12tn005.pdf

Alberts, Christopher; Allen, Julia; & Stoddard, Robert. Risk-Based
Measurement and Analysis: Application to Software Security
(CMU/SEI-2012-TN-004), Software Engineering Institute, Carnegie
Mellon University, 2012.

http://www.sei.cmu.edu/reports/12tn004.pdf

http://www.cert.org/sse/
http://www.sei.cmu.edu/reports/12tn005.pdf
http://www.sei.cmu.edu/reports/12tn004.pdf

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Publications and Resources -2

Alberts, Christopher & Dorofee, Audrey. A Framework for
Categorizing Key Drivers of Risk (CMU/SEI-2009-TR-007).
Software Engineering Institute, Carnegie Mellon University, 2009.

http://www.sei.cmu.edu/library/abstracts/reports/09tr007.cfm

SEI Mission Success in Complex Environments (CSE) Special
Project

http://www.sei.cmu.edu/risk/

http://www.sei.cmu.edu/library/abstracts/reports/09tr007.cfm
http://www.sei.cmu.edu/risk/

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 32

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 18:
Design Patterns
(Authored by Kevin Gary, Arizona State University)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

What are patterns?
Patterns history
Pattern types and examples

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Are Patterns?

Patterns are reusable solutions in a context.
• Context: when, where, tradeoffs, lesson-learned
• There are all kinds of patterns:

- Design patterns
- Analysis patterns – tend to be domain-specific interpretations
- Process patterns (Coplien) – reusable business process segments

Patterns capture domain experiences from master practitioners
that solve real problems.
Patterns form a common vocabulary within a team or organization.

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Patterns, Styles, Idioms and DSSAs -1

Design Patterns
• Tactical decisions, choice has local scope
• Typically described with class-level interactions

Architectural Patterns and Styles
• Strategic decisions impacting broad portions of a system
• Fundamental structural organization for software system

Idioms
• Tribal knowledge particular to a language or technology

Domain-specific Patterns
• Vertical domains sharing solutions to common problems

Focus of
this lesson

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Patterns, Styles, Idioms and DSSAs -2

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, NenadMedvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Idiom

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Patterns History

Pattern coined by architect Christopher Alexander
“Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing the same thing twice. For convenience and
clarity, each pattern has the same format.”

Software patterns began in late 80’s
• Cunningham & Beck’s Smalltalk UI patterns
• Jim Coplien’s C++ idioms
• Erich Gamma’s work on recording design structures

Milestone book Design Patterns by Gang of Four (GoF)
• Defines and categorizes 24 patterns used commonly in object-

oriented designs – have become part of the community’s vocabulary

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Simple Pattern Example

Name: Bridge Pattern (not the GoF version)
Problem: An obstacle blocks a pathway
Solution: Attach a span across support structures that

accommodates required travel on the pathway

Example:

Pattern Structure:

Support

Support Span
Pathway

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Pattern Format (GoF format)

Name: Bridge

Intent: To provide access to a pathway over an obstacle. The obstacle is
commonly at or below the level of the pathway.

Problem: An obstacle blocks a pathway requiring travelers to journey long distances
around the obstacle to complete their passage.

Solution: A span is built on top of multiple, anchored support structures so it clears
the obstacle and supports travelers on the pathway.

Structure: In general, two or more fixed support structures bear the load of the span
providing access over an obstacle.

Behavior: The pathway continues over the span. As weight on the span increases,
it is transferred to the fixed support structures.

Implementation: <description in appropriate notation, commonly C/C++/Java for software>

Known uses: Used successfully over broad waterways and deep valleys

Consequences: Useful where construction costs can achieve ROI of enabled route. Must
use creative designs (see Draw Bridge Pattern) when obstacle is water
and requires ship passage.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Pattern Example: Adapter
Translates an interface to a compatible interface.

• The adapter pattern is useful in situations where an already
existing class provides some or all of the services you need but
does not use the interface you need.

class App {
public static void main(Stringargs[]) {

// some initialization here
ILineDrawer ld = LineFactory.getDrawer()
ld.drawLine();
}
interface ILineDrawer {

// draw a line from origin to point
public void drawLine (intx, inty);

}
class PolarLine {

public void line(double angle) {
// draws line based on radial

}
}
class PolarAdapter {
PolarLinepline = new PolarLine();

public void drawLine(intx, inty)
double rad = Math.atan((double)x / y);

pline.line(rad);
}

}

http://en.wikipedia.org/wiki/Service_(systems_architecture)
http://en.wikipedia.org/wiki/Interface_(computer_science)

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Pattern Types (from GOF)

Creational patterns
• Decouple clients from knowing how an object is created
• Examples: Singleton and Abstract Factory

Behavioral patterns
• Provides guidance on where to implement responsibilities
• Examples: Observer and Strategy

Structural patterns
• Provides guidance on composing objects and classes
• Example: Decorator and Adapter

A pattern is a (recurring) solution to a
problem in a given context.

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Creational Patterns: Abstract Factory

Intent: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes

• Decouple clients from knowing how to create product

Abstractions
(what the client sees)

One instantiation

Another instantiation

«role»
AbstractFactory

+ createProductA ()
+ createProductB ()

«role»
ProductA

«role»
ProductB

«role»
ConcreteB1

«role»
ConcreteA1

«role»
ConcreteFactory1

create
create

«role»
ConcreteB2

«role»
ConcreteA2

«role»
ConcreteFactory2 create

create

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Abstract Factory Example

Decouple clients from specific service implementations

TransactionService

+ create ()

Transaction

SimpleTransaction

Factory

SimpleTransaction

DistributedTransaction

Factory

DistributedTransaction

create

create

 Client

Abstract Factory
Product

Concrete Factory
Concrete Product

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Creational Patterns: Singleton

Ensures a class has only one instance, and provides a global point of
access to it

• A very popular pattern and commonly needed by other patterns
• Implementations typically use class-scope to provide global access
• Different than using a class with static variables and methods, as it is

still a stateful object
Example – how do clients obtain the AbstractFactory?

• One strategy is a singleton

 «singleton»
AbstractFactory

+ instance : AbstractFactory

+ getAbstractFactory () : AbstractFactory

+ createProductA ()

+ createProductB ()

- AbstractFactory ()

{if (instance == null)
instance = new AbstractFactory()
return instance;}

Global point of access

Ensures only one instance

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Behavioral: Observer Pattern
Defines a one-to-many dependency between a subject and
observers. When the subject object changes state, all its observer
objects are notified.

 : «role» Subject

 : «role» Observer

AnyObject

1 : create ()

2 : create ()

3 : register ()

 : «role» Observer : «role» Subject

1 : stateChange ()

2 : notify ()

Structural View

Behavioral Views
Initialization

Notifying observers

«role»
Subject

+ register ()
+ create ()
stateChange ()

«role»
Observer

+ create ()
+ notify ()

0..*

notifies

UML Collaboration

Observer«role»
Subject

«role»
Observer

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Applying the Observer Pattern

class Temperature {
List<Observer>myObservers;

public register (Observer newOne) {
myObservers.add(newOne);

}

// Internally detect state change
protected detectTemperatureChange() {

for each observer in myObserver
observer.notify();

}
}

class DigitalDisplay realizes Observer {
public void notify() {

//update digital display
}

}

Collaboration Template Instantiation

interface Observer {
public abstract void notify();
}

Observer«role»
Subject

«role»
Observer Temperature

HVACSystem
Observer

«bind»
Subject()

«bind»
Observer()

DigitalDisplay
«bind»

Observer()

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Java Support for Observers

Java provides two types of Observer mechanisms:
• Listeners

- Commonly associated with GUI applications
- “Lightweight” in that the observed object is responsible for

maintaining the list of listeners and notifying them.
• Observable/Observer

- A class that allows itself to be watched must extend Observable
- A class that watches an Observable implements Observer
- Thoughts:
o Basically provides an implementation of the Listener approach for

you by providing methods on Observable like addObserver,
notifyObservers, etc.

o Since your class must extend Observable, it becomes tightly
coupled to that inheritance hierarchy.

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Behavioral Patterns: Strategy

Intent: Define a family of algorithms, encapsulate each one, and
make them interchangeable

• Allows algorithm to be managed independently instead of
inside the method with a large switch statement

• Allows new algorithms to be easily added
• Allows context to change strategy dynamically

«role»
Strategy

+ algorithm ()

«role»
Context

«role»
ConcreteStrategyA

«role»
ConcreteStrategyB

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Strategy Pattern Example

Example: An employee’s pay type (hourly, salaried) and method
(direct deposit, mail check) vary based on type.

switch(employee.payType) {
case Hourly:

switch(employee.deliveryType) {
case DirectDeposit: ...
case CheckMailedToEmployee: ...

}
case Salaried:

switch(employee.deliveryType) {
case DirectDeposit: ...
case MailCheck: ... break;

}
}

Clients are responsible
for knowing all types
and permutations!

Poor Separation of Concerns

Employee

+ payType : {Hourly, Salaried}
+ deliveryType : {DirectDeposit, MailCheck}

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Strategy Pattern Example – Inheritance

Behold the power of inheritance to really confuse a design!
• Still exposes all permutations

 Employee

+ getPayAmount ()

+ deliveryPay ()

Hourly

+ getPayAmount ()

Salar ied

+ getPayAmount ()

DirectDeposit

+ deliveryPay ()

MailCheck

+ deliveryPay ()

HourlyDirectDeposit

SalariedDirectDeposit

HourlyMainCheck

. . .

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Strategy Pattern Example
Encapsulate each algorithm under a strategy.

• Manage each behavior in its own location.
• Dynamically change binding of behavior to its context.
• Limitations – many single-method classes

 PayCalculat ionSt rategy

+ getPayAmount ()

 PayDeliverySt rategy

+ deliverPay ()

Hourly

Salaried

DirectDeposit

MailCheck

Employee

 1 1

class Employee implements PayCalculationStrateg,
PayDeliveryStrateg {

// assume constructor initializes these
PayCalculationStrategcalcStrategy;
PayDeliveryStrategdeliveryStrategy;

public float getPayAmount() {
return calcStrategy.getPayAmount();

}
public void deliverPay() {

deliveryStrategy.deliverPay();
}

}

class Hourly implements PayCalculationStrateg {
public float getPayAmount() {

return (rate * hoursWorked);
} }
class Salaried implements PayCalculationStrateg {

public float getPayAmount() {
return (salary / payPeriods);

} }
class DirectDeposit implements PayDeliveryStrateg {

public void deliverPay() {
// deliver electronically;

} }
class MailCheckimplements PayDeliveryStrateg {

public void deliverPay() {
// deliver by snail mail;

} }

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structural Patterns: Decorator

Intent: Attach additional responsibilities to an object dynamically.
• Can easily add new decorations to existing system
• Decorators provide an alternative to subclassing for extending

functionality.

«role»
Component

+ execute ()

«role»
Decorator

+ execute ()

1

«role»
ConcreteComponent

«role»
ConcreteDecoratorA

«role»
ConcreteDecoratorB

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decorator Example (Java Streams)

Java provides a rich set of stream classes for reading bytes and
interpreting them.

• Input stream interface for reads bytes
• Buffered stream read bytes from another stream & buffers
• Data stream reads bytes& converts to primitive types
• InputStreamReader reads bytes and converts to char

InputStream

+ readBytes ()

InputStream serves as the
Component and the Decorator

DataInputStream

InputStreamReader

BufferedInputStream

FileInputStream

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decorator Example (Java Streams)

Other Java technologies define extensions of InputStream so their
streams can play in the decoration process.

Client reads bytes

Client reads bytes that are
buffered

Client reads primitive data with
bytes being buffered

Client reads characters given a
byte encoding (ASCII, UTF-8),
no buffering

 : FileInputStream

 : FileInputStream

 : FileInputStream

 : FileInputStream

 : BufferedInputStream : DataInputStream

 : BufferedInputStream

 : InputStreamReader

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Pattern Systems
Pattern systems: relating patterns to solve problems

“There is a structure on patterns which describes how each pattern is
itself a pattern of other small patterns [and] the way they can be
arranged with respect to other patterns” – Alexander

Example – implementing MVC might use:
• Publish-Subscribe to define an Observer for model changes
• Command Processor to decouple behavior from controllers
• Factory Method to create the controller

Controller

Model

View

Request Command
Processor

Controller

Controller

Response
Observer

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Anti-Patterns

A bad solution to a problem in a context
• What not to do is as important as what to do.

Examples - “Vendor Lock-in”, “Analysis Paralysis”
• See “Big Ball of Mud”

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Design Patterns Summary

Patterns capture domain experiences from master practitioners
that solve real problems.

• Provide good separation of concerns by placing system
responsibilities in the “best” location

• Loose coupling – indirection provides flexibility and reuse
• Favor delegation over inheritance

Patterns raise the vocabulary of models & teams.
• Less effort explaining parts of systems
• Less effort understanding code

Exploiting patterns requires thinking abstractly vs. thinking code-
centrically.
Patterns convey more than a design solution - also a context for
the solution.

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Design Patterns Wrap-up

Design pattern themes
• Provide good separation of concerns by placing system

responsibilities in the “best” location
- “Best” is subjective as there are many conflicting concerns
- Design is trade-offs!

• Loose coupling – indirection provides flexibility and reuse
• Favor delegation over inheritance

Patterns raise the vocabulary level of models and teams.
• Less effort explaining parts of systems
• Less effort understanding code when we understand

system’s common patterns

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

References and Interesting Reading

“A Pattern Language”, Christopher Alexander, 1977.

“Design Patterns: Elements of Reusable Object-Oriented Software”
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

“Pattern-Oriented Software Architectures: A System of Patterns”,
Frank Buschmann, RegineMeunier, Hans Rohnert, Peter
Sommerland, Michael Stal.

“Analysis Patterns : Reusable Object Models”, Martin Fowler

http://www.martinfowler.com - Martin Fowler’s web site

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Design Pattern: Builder

Goal of pattern is to produce a complex object.
• Often this “object” is a Façade or Composite.

Object model is not built “in one shot”.
• The creation process is itself complex, has many conditions, and may

partially succeed or fail.
You often refactor into a Builder from a Factory Method or Abstract
Factory.

• You don’t set out to use this pattern in the first place.
See also: Prototype

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Builder Example

From http://www.apwebco.com/gofpatterns/creational/Builder.html

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Design Pattern: Mediator

Not enough to have structural patterns that define the static relationships
in a complex object structure
Also need behavioral patterns to describe how complex object structure
communicate
Mediator does this by encapsulating the communication between
collections of objects.

• Goal is similar to Observer – decouple the objects by externalizing the
communication.

• Implementation is opposite however, Mediator encapsulates,
Observer separates.

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Mediator Example

ChangeManager is the Mediator.
Note that Observers can be used internally within the Mediator!
Observers can be used side-by-side with Mediators too!
How does the interaction diagram change between Observer& Mediator?

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Design Pattern: Composite

Structural Pattern used when:
• An object may have substructure of the same type as itself!
• Example: definition of a binary tree

- “A binary tree is a data structure where the tree may possess two
trees, a left tree and a right tree.”

- Example: definition of a well-formed XML document
- “A well-formed XML document is comprised of elements, which

themselves may have elements nested within them.”
• Example: definition of a company

- “A company is comprised of employees, each of whom has a
supervisor who is her/himself an employee, except the CEO. Some
employees do not supervise anyone.”

• The first 2 definitions suggest containment, but the last 1 is not
a containment, but a “supervises” relationship.

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Composite Design Pattern
To Note:
Client only sees Component;
Composite methods for structure used
by someone else (Builder?).

Often a special case is made of leaf
nodes of the inherent tree; not strictly
necessary.

• Usually Leaf would Decorate
Component (meaning an operation3)

The Composite’s implementation of
business operations is usually to
delegate to children (down the tree) and
aggregate results back up (roll up the
tree).

Composite often used in conjunction
with Decorator, Visitor, Factory, Builder,
and lots more!

Note the initial awkwardness
• Composite specializes Component
• Composite holds 1-n references to

children of type Component
• Therefore, a child of a Composite

can be a Composite itself or a Leaf

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Composite Source Code
class DirComp extends FileSysComp {
Vector dirCnts = new Vector();

public DirComp(String cName) {
super(cName);

}
public void addComponent(FileSysComp fc)

throws Exception {
dirContents.add(fc);

}
public FileSysComp getComponent(int l)

throws Exception {
return (FileSysComp)dirCnts.elementAt(l);
}
public long getComponentSize() {
long sizeOfAllFiles = 0;
Enumeration e = dirContents.elements();
while (e.hasMoreElements()) {
FileSysComp Comp =

(FileSysComp) e.nextElement();
sizeOfAllFiles +=

(Comp.getComponentSize());
}
return sizeOfAllFiles;

}

abstract class FileSysComp {
String name;

public FileSysComp(String cName) {
name = cName;

}
public void addComponent(FileSysComp comp)

throws Exception {
throw new Exception("Invalid Operation");

}
public FileSysComp getComponent(int compNum)

throws Exception {
throw new Exception("Invalid Operation");

}
public abstract long getComponentSize();

} // End FileSysComp

class FileComp extends FileSysComp {

private long size;

public FileComp(String cName, long sz) {
super(cName);
size = sz;

}
public long getComponentSize() {
return size;

}
} // End of class

37Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Chain of Responsibility (CoR) Pattern

“Avoid coupling the sender of a request to its receiver by giving
more than 1 object a chance to handle the request.”
“…decouple senders and receivers by giving multiple objects a
chance to handle a request. The request gets passed along a
chain of objects until 1 of them handles it.”

• Each object supports a common interface for receiving a
request.

• Each object must forward requests to the next object in the
chain.

Use this pattern when more than one object can handle the same
request, and you don’t know who beforehand.
Issue: what if nobody handles it? What if an object in the chain
makes a global assumption?

38Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Command Pattern

“Encapsulate a request as an object, thereby letting you
parameterize clients with different requests…”

“Commands are an OO replacement for callbacks”

The Command pattern lets you decouple the representation of an
action from when and where it actually occurs.

Helps support “undo”, logging, and design centered around a few
key operations universally applied within a system

39Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CoR and Command Patterns

Chain of Responsibility:

Command:

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 40

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 19:
UML Overview
(Authored by Kevin Gary, Arizona State University)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

What is a model?

UML overview / refresher

UML Activity Diagrams and examples

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Overview of Modeling

A model is an abstraction of the real world.
Modeling is a heavily practiced, proven engineering technique.

• architectural modeling of buildings
• mathematical modeling of systems

Models include important details and omit minor aspects.
Why do people model?

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Why Do We Model?

To help us understand what a system should do, and how it should
do it

To communicate our decisions of what and how

To detect and prevent misunderstandings and miscommunications

To generate (portions) of the system’s artifacts

To help understand existing systems (reverse engineering)

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

UML (Unified Modeling Language)

The Unified Modeling Language (UML) is a language for specifying,
visualizing, constructing, and documenting the artifacts ofsoftware
systems, as well as business modeling and other non-software systems”

Standard language for modeling software-intensive systems
Can be used to generate code

• UML 2.0 additions focused on formal semantics for transformations

Notation independent of development process
• UML is not a methodology or process

Numerous tools exist which implement UML
• http://www.objectsbydesign.com/tools/umltools_byCompany.html
• Several tools reverse engineer code into UML

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Why UML?

UML has became the de facto language for describing the artifacts of
software-intensive systems.

• Several extensions exist for systems engineering (SysML) and others
(software engineering, business process modeling).

• Can serve as a standard for the definitions of the concepts of object-
orientation (OO)
- But in practice, there is no such standard.

• Includes recommendations about how to describe systems
UML is a syntactically and semantically complete language!

• The visual elements are expressed and related in specific ways
(syntax).
- You can have the equivalent of a compiler error - i.e. you can’t just connect

things with a line anywhere you like!
• Even if you can connect them, the type of line matters (semantics).

- If it is dashed or not, uses a hollow or thin arrow, etc.

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

UML Diagrams Support Multiple System Views

Use case view (Use Cases, Activity)
• behavior of the system as seen by the end users

Design view (Class, Object)
• both static and dynamic view of classes and objects; their

relationships and their interaction
Process view (Timing, Interaction, Statechart)

• illustrates concurrency and synchronization issues
Implementation view (Component, Package)

• configuration management issues about assembly and release
of code files

Deployment view (Deployment)
• distribution of parts among hardware elements

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Categories of UML Diagrams

UML 2.0 has (at least) 18 different diagrams.
A few different ways to think about them (in addition to previous
slide):

• Descriptor vs. Instance
- Descriptor diagrams describe the system’s general case, instance

show system snapshot
o Descriptor diagrams - class, use case, deployment, component
o Instance diagrams– object, sequence, static structure,

deployment, component
• Behavior vs. Structure

- Need both behavior and structure to communicate
o Behavior – statechart, interaction, timing, use case
o Structure – class, component, deployment, block (SysML)
o Flow might be another form here – activity, sequence, timing

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 10

UML Activity Diagrams

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is an Activity Diagram?
An activity diagram in the use-case model can be used to capture
the activities and actions performed in a use case.
It is essentially a flow chart, showing flow of control from one
activity or action to another.

Flow of Events

This use case starts when the Registrar requests
that the system close registration.

1. The system checks to see if registration is in
progress. If it is, then a message is displayed to the
Registrar and the use case terminates. The Close
Registration processing cannot be performed if
registration is in progress.

2. For each course offering, the system checks if a
professor has signed up to teach the course offering
and at least three students have registered. If so,
the system commits the course offering for each
schedule that contains it.

Activity 1 Activity 3

Activity 2

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Activity Diagram

Synchronization
Bar (Fork)

Guard
Condition

Synchronization
Bar (Join)

Decision
Concurrent

Threads

Transition

Select Course

[add course]

Check
Schedule

Check
Pre-requisites

Assign to
Course

Resolve
Conflicts

Update
Schedule

Delete Course

[checks completed] [checks failed]

[delete course]

Activity/Action

Final /
Termination

Merge

Initial / Start

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Activity Diagrams

Summary of Notation:
• Action/Activity state – Action states cannot be

decomposed, Activity states may be (UML 1.5 - as of UML
2.0 replaced with Activity frames)

• Transition – control flow; a transition is triggered upon
completion of some activity

• Decision/Merge point – standard if-else style logic; also
supports iteration. Guard conditions indicated in brackets
in each transition.

• Object node – may be (typically not) included to show
where an object’s state may change.

• Synchronization bar – supports fork/join semantics for
concurrent processing

• Swimlanes – partition by responsibility, not thread

Label
[state]

label

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Activity Diagram
Action
A step in the flow of events

Decision
Flows split based on a guard
condition

Flow
Show the sequence of
activities

Fork
Beginning of concurrent flows

Join
End of concurrent flow

Figure from IBM

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Mapping Who Does What to Whom

Examples so far show us what actions happen.
• But “WHO” does each action and “WHEN”?

Swimlanes
• Partition activities according to who does them.
• Who can be actors, system components, whatever.
• When is indicated top-to-bottom (like a sequence diagram) or

left-to-right.
To Whom?

• Activity diagrams can show relationships to objects that are
affected by actions.

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example by
Bau Yoon Teck

Example

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How do you derive Swimlanes?

Swimlanes add an analysis step.
• You are assigning a responsibility to an actor.
• Note, we did not say to an object - to an actor.

How to do?
• Technique: Return to your scenarios

- Outline format the steps based on who does them

1.PA selects “Check Out”
2.System renders summary
3.PA enters credit card
4.PA selects “Submit”
5.System asks 3rd party verify
6.3rd party verifies
7.System confirms for PA

1.PA selects “Check Out”
2.System renders summary

3.PA enters credit card
4.PA selects “Submit”

5.System asks 3rd party verify
6.3rd party verifies

7.System confirms for PA

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Role Do Objects Play?

We think of UML as OO, but rarely do we see an Object on an
Activity diagram.

• Activity diagrams are for flow modeling.
• Object behaviors are typically modeled using an UML

Statechart.

But yes objects can be shown:
• Do if it is important to show critical object state changes or

dataflow in the activity diagram context!

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Activity Diagram w/ Objects

Example from http://www.uml-diagrams.org/activity-diagrams-examples.html
Objects! (should really use [] for state)

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Activity Diagram Summary
Pros

• Map use case scenarios directly on to actions
• Most intuitive for most procedural programmers
• Includes constructs concurrency and task assignment
• Includes constructs for top down decomposition (activity

frames)
Cons

• Some confusion of the relationship between activity diagrams
and statecharts

• Some changes in terminology from 1.5 to 2.0
• Relatively poor tool support

Recommendation: Useful early in analysis, after use cases but
before interaction diagrams

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 21

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 20:
Behavioral Modeling Using
UML State Machines
(Authored by Kevin Gary, Arizona State University)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

Behavioral Modeling
State Machines
UML Statecharts
Summary

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Behavorial Modeling

Domain Models capture the object vocabulary of the problem space.

These models describe objects, relationships, and (some) interactions
independent of a specific problem of solution.

• Examples: data dictionaries, glossaries, statecharts

Behavioral Models capture the observable behaviors of a system.
• Capture how the system reacts to external stimuli
• Examples: Stimulus-Response models, Event-oriented decomposition, Statecharts

Domain vs. Behavioral Models:
• Domain models are usually problem independent.
• Behavior models can describe a domain yet also introduce problem-specific constructs.

Outside
world Application

events behavior

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

In-depth: The need for SMs

Definition of an object:
• An object has state, behavior, and a unique identity.
• Object models are expressed using attributes, behaviors, &

messages.
- An object has one or more attributes.
- An object exhibits one or more behaviors.
- Objects communicate via messages.

We need a way to capture dynamic behaviors!
• The way in which an object’s state changes over time

- The object may change (transition) state for many different reasons,
which we will model using events.

- One reason might be that a message arrives from another object!

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Are State Machine Diagrams?

A state machine diagram models dynamic behavior.
It specifies the sequence of states in which an object can exist:

• The events and conditions that cause the object to reach those
states

• The actions that take place when those states are reached

Assistant
Professor Tenured

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

LAMP

State Machine Example

Example
• Consider a lamp with two separate brightness settings:

Off On-low On-high

Burned-out

click click

click

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

UML Statechart 1-slide cheatsheet

Previous diagram was not UML!
Statechart syntax:

state

exit event

activity initial pseudostate

final state

action

actionevent

transition

EatingWriting

do / write
exit / send document.save

hungry or frustrated /
visit refrigerator

satiated /
return to desk

complete course

begin course

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

State Machine Overview

Three elements of a statechart diagram
• States:

- Condition or situation during the life of an object during which it
satisfies some condition, performs some activity, or waits for some
event.

- Some states are “special”.
• Events:

- Internal and external occurrences that impact or are generated by
an object.

• Transitions:
- Response of an object based on events and present state
- May have Guards or Activities associated with them
- On such a change of state, the transition is said to fire

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Anatomy a State

A State can have several parts:
• Name
• Entry/exit actions

- Entry action: entry / action
- Exit action: exit / action

• Internal transitions
- These bypass the entry/exit actions and guard conditions.

• Substate, deferred events, & other things we won’t use
When in a given state, an object may be active.

• Active means it is doing something, some action.
• That action is interruptable, or may run to completion.

- It may generate a completion event which results in a transition.
- If the state exits via some other event, then the action is terminated.

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Applied

Special States

The initial state is entered when an object is created.
• Exactly one initial state is permitted (mandatory).
• The initial state is represented as a solid circle.

A final state indicates the end of life for an object.
• A final state is optional.
• A final state is indicated by a bull’s eye.
• More than one final state may exist.

Other special (pseudo) states exist in UML, but are not relevant to
what we will do with Statecharts.

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Are Events?

The specification of a significant occurrence that has a location in
time and space

• An event is an occurrence of a stimulus that can trigger a state
transition.

• Example:
- Successful publication of numerous papers

TenuredAssistant
Professor

Event

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

UML Event Types

UML defines 4 event types:
• signal event: sname(p:T)

- Receipt of an explicit, named, asynch communication among
objects

• call event: op(p:T)
- Receipt of an explicit synchronous request among objects that wait

for a response
• change event: when (exp)

- A change in value of a Boolean expression (continuous check)
• time event: after (time)

- Arrival of an absolute time or passage of a relative
amount of time

Most common type of event is the signal event.

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Event Examples
move stopCollision

state statetransition

Signal event

Manual AutomaticstartAutopilot(normal)

Idle Active

when(11:49PM)

after(2 seconds)

Time event

Change event
Call event

Time event

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Transition Event Name

TenuredAssistant
Professor maxPapers

What Are Transitions?
A transition is a change from an originating state to a successor

state as a result of some stimulus.
• The successor state could be the originating state.
• Transitions typically take place in response to an event.
• Transitions may take place when an object completes an activity.

Transitions can be labeled with event names.
• But keep in mind that events and transitions are not the same thing!

- Event: something happened, or changed, or was communicated in the world
- Transition: specific to an object, indicates a change in its state

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Are Guards/Actions/Activities?
Transition: event [guard] / activity

A Guard is a boolean condition that may optionally be present on a
transition.

• If the condition if false, no transition.

An Activity is an optional behavior that is executed during a
transition.

Note: UML 1.x used the term “action” for a behavior on a
transition, and used “activity” for ongoing tasks.

• Activity (within a state) could be interrupted
• Actions (on a transition) could not (run-to-completion semantics)

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Internal versus External Transitions

UML also defines some special Activities:
• An entry activity executes whenever you enter a state.
• An exit activity executes whenever you leave a state.
• An internal activity is one where a SM can react to an event

without leaving the state.
- Note, this is slightly different than a self-transition in that no

entry/exit activities are executed.

InReverse
onEntry: “beep”

onExit: “beep off”
Internal transition: put in reverse

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How All This Works
1. An instance begins life in the state pointed to by the initial pseudostate.
2. Entry actions are executed every time the state is entered.
3. Exit actions are executed every time the state is exited.
4. The guard condition is evaluated after the event instance occurs.
5. If an event instance matches a transition label, that transition fires if its guard

condition allows.
6. If an activity is running when a trigging event instance occurs, the activity is

terminated.
7. The completion of all activity in a state is considered an event—a completion

event.
8. A transition without an explicit event label is triggered by the completion event

instance if its guard condition allows.
9. Event instances that don’t match some transition label are ignored and lost.

Note the synergy with Activity diagrams; Statecharts use many of the
same concepts and symbols, but turn an Activity diagram “inside out” to

view interactions from the object’s perspective!

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Statechart Example 1

Anything a little strange in this model to you?

How many states:
• Are final states?
• Have an activity?
• Have an entry or exit activity?
• Represent exceptional

circumstances?
How many transitions:

• Are self-transitions?
• Are internal transitions?
• Have guard conditions?
• Have an action?
• Are signal events? Call?

change? Time events?

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Statechart Example 1 “strangeness”
There were nodes that weren’t final states
but had no outgoing transitions!

• Invalid, Busy,
(Pinned,Talking)

• This is not illegal
according to
UML!

But it is strange;
what we want is a
blanket condition
that says whenever
callee hangs up we
should disconnect
on our end.

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Statechart Example 2
Note:

• Multiple transitions

• Guard conditions

• On entry

• Internal transition

• Actions on transitions

• Events

- Signal

- Call

- Change

- Timer Statechart taken from http://blog.jstoutenburg.com/2010/12/uml-statechart-diagram.html

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

More SM Concepts
Exceptional conditions

• Do you have to specify transitions for every state that correspond to
every single possible (or impossible) thing that could ever happen in
the Universe?

Example:
• “Your Bank Account standing goes from Good to Bad if a bunch of 3-

legged Martians riding flying camels descend from the sky and deep-
fry your bank.”

• How would you specify a transition for this? You wouldn’t!
• However, you can characterize all “unexpected” states and transitions

as “exceptional”.
- All transitions you do not specify as valid are assumed invalid.
- You have three options:
o test for, and disallow, the transition
o do not test for, and risk, an invalid transition
o throw an exception - “I’ve reached an unexpected state”

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Statechart Summary

1. The event1 causes s2entry() to execute and s1activity() to start.

2. When event2 occurs
1. If [condition] is false the object does nothing, otherwise we continue
2. s1activity() is aborted if running
3. s1exit() action, transition action(), and s2entry() execute sequentially
4. s2activity() begins

3. If event3 occurs while processing the sequence above, it is queued until after all
the actions (s1exit(), action(), s2entry())
• Run to completion semantics requires the object completely arrive in a state

before starting the transition to another state
• Ensures objects are “thread-safe” and cannot be corrupted by asynchronous

events

State1
do / s1activity()
entry/ s1entry()
exit / s1exit()

event2 [condition] / action() State2
do / s2activity()
entry/ s2entry()
exit / s2exit()

event1 event3

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Statechart Tips
Think about the set of different states that object can be in at any given
time – name them!
Think about how many final states the object may have.

• Maybe it is zero – an object that “lasts forever”.

Think about how you get from one state to another.
• This is the “how” part of an object - the dynamic behavior.
• It is important to capture all of the transitions!
• There can be more than 1 way to get from one state to another!
• A transition may go from one state back to itself!

Think about what actions occur as “side-effects”, and when!
Are there expected/unexpected “weird” situations?

Importance for your project:
1. You start modeling a domain by identifying and describing objects.
2. Statecharts describe object state and behaviors.
3. Nice jumping off point from Activity diagrams, syntactically &

semantically.

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 25

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 21:
Inspections
(Developed by Mel Rosso-Llopart and Anthony Lattanze)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software work product inspection

Benefits of work product inspections

The cost of inspections

The formal work product inspection process

Outline

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Work Product Inspections -1

A process where a software work product is reviewed by a group of
peers

• documents, designs, code
Two general types

• more formal inspections (formal)
• less formal inspections (informal)

In either case, the work product is always reviewed by a group of
peers.

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Work Product Inspections -2

There are formal and informal inspection methods.
Formal inspections feature

• highly structured process for preparation, meeting protocol,
data collection, and post meeting activities

• table-top meeting oriented
• excellent for ensuring final revision product quality and

standards

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Work Product Inspections -3

Informal inspections feature
• less structure, formality, and rigidity
• more open discussion (peer review)
• table-top or presentation oriented
• excellent for initial artifact presentation, artifact discussion, or

selection of alternatives
Both formal and informal inspections have their place in a project.

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Benefits of Inspections -1

The benefit of the inspection process is threefold:
• ensure that work products are of the highest possible quality
• ensure that software work products meets organizational and

legal standards
• standard products are more maintainable than those that do

not follow conventions for coding, commenting, and
documentation

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Benefits of Inspections -2

Provides visibility into the products and services that each engineer
provides individually
Facilitates detailed technical communication which helps:

• foster reuse
• acts as a training vehicle
• provides fresh insight into technical problems

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Benefits of Inspections -3

The earlier a defect is found in the software development process,
the less it costs to repair.

The longer a defect goes undetected the more it will cost to repair.
WHY?

Watts Humphrey, A Discipline for Software Engineering,
Addison Wesley, 1995.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Cost of Inspections -1

The dollar cost of finding a defect during system test vs. finding the
defect in design is 100:1.

• The time cost is 200:1.
Jet Propulsion Lab (JPL) reported the cost of finding a defect in an
inspection is $100, in a test $10,000.
On average, design and code reviews reduce the cost of testing
by 50-80% including the cost of the reviews

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Cost of Inspections -2

Exact cost will vary with organization.
Rule of thumb for code inspections:

• ≈3 person hours per 100 lines of source code written
Cost for design or requirements inspections varies widely.

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Formal Inspection Process Roles

Producer: creator of the artifact to be inspected

Reviewers: will review the document; there should be at least 3
reviewers for formal inspections

Moderator: keeps the inspection meeting focused, can also be a
reviewer

Time Keeper: can also be a reviewer, producer, or moderator

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Formal Inspection Process -1

Pre-Inspection
• set expectations
• schedule inspection and provide agenda 48 hours prior to the

meeting
- recommendation: limit meeting to 2 hours
- plan on at least 3 reviewers (including producer)
- provide supporting documents
- reviewers must review artifact prior the inspection meeting

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Formal Inspection Process -2

Inspection Meeting for Documents
• moderator will lead inspection
• paragraphs, or major sections should be called out

Inspection Meeting for Code
• moderator will lead inspection

- line numbers can be called out
- code can be read directly or paraphrased

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Formal Inspection Process -3

Agree on reading style before inspection meeting.
Reviewers make comments in turn.
Producer will record each issue.

• may formally address each issue after the inspection meeting
- not all issues will be defects

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Formal Inspection Process – Hints for Success

Keep meeting within time constraints
• Various studies have shown that yield declines after 2 hours or

too many Line of code reviewed per hour.
Moderator will keep discussion on track

• Don’t solve problems during the inspection meeting.
- raise issues
- record issues
- address them later

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Guidelines for Informal Inspections

Stay focused and maintain time constraints.
• avoid degenerating into a freeform discussion
• set expectations
• record relevant discussion such as

- decisions
- issues
- points of contention
- action items

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

Understand

• what software work product inspections are

• the cost of software work product inspections

• the benefits of software work product inspections

Know basically how to conduct software work product inspections.

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

Did you have occasion to do formal inspections on projects?

What about peer reviews?

What about pair programming in Agile? Any experience with it?

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

References

Hoover, C., Rosso-Llopart, M., Taran, G. Evaluating Project
Decisions: case studies in software engineering. Boston, MA:
Addison Wesley, 2009.
Pressman, R. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Science/Engineering/Math; 7 edition (January 20,
2009).

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 21

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 22:
System Testing
(Developed by Eduardo Miranda)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

Purpose of software verification

Verification methods

Inspections

Testing

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Learning Objectives

Understand the importance of software verification

Recognize the strengths and weaknesses of different verification
approaches

Become acquainted with the concept of coverage

Acquire a basic knowledge of test case design techniques

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

But just remember there's a lot of bad and
beware “Oh, baby, baby, it's a wild world”

• In-flight entertainment system
rebooting, Delta, 2011

• Ticket machine, Dubai Metro 2010
• Electronic billboard crash, Panama

City, 2011

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Purpose of Software Verification

Finding faults before the software is released to its users
Justify confidence in the program by demonstrating that

• It does what it is supposed to do under its stated conditions
• It doesn’t do what it is not supposed to do under adverse

conditions

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Quality Characteristics & Verification Techniques

Functionality
Reliability
Usability
Efficiency
Maintainability
Portability

Inspection
Testing
Analysis
Demonstration

Techniques Quality characteristics

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Verifying Quality Characteristics: Inspection

International Council on System Engineering (INCOSE)
• The verification method of determining performance by examining (a) engineering

documentation produced during development or modification or (b) the item itself using
visual means or simple measurements not requiring precision measurement equipment

Software practitioner
• The scrutiny by people other than the producer, of human oriented development

artifacts with the aim of meeting contractual obligations, finding non-compliances with
standards or uncovering defects based on the premise that individuals might be blind to
some of the trouble spots in their own work and in consequence it is beneficial to have
someone else look at it

Uses
• Complement testing. Come earlier in the process. Germane to the verification of faults

of omission, design problems, style issues

Examples
• Is the software maintainable?
• The review of code to find if it is properly commented and styled

2011 (c) Eduardo Miranda

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Verifying Quality Characteristics: Testing

INCOSE
• The verification method of determining performance by exercising or operating the

system or item using instrumentation or special test equipment that is not an integral
part of the item being verified. Any analysis of the data recorded in the test and that is
needed to verify compliance (such as the application of instrument calibration data)
does not require interpretation or interpolation/extrapolation of the test data.

Software practitioner
• The, more or less, thorough execution of the software with the purpose of finding bugs

before the software is released for use and to establish that the software performs as
expected

Uses
• Verification of functional and performance requirements

Examples
• When provided with the correct user name and password the user is able to login into

the system
• The software is capable of handling a load of a thousand transactions per minute

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Verifying Quality Characteristics: Analysis

INCOSE
• The performance and assessment of calculations (including modeling and simulation)

to evaluate requirements or design approaches or compare alternatives.
• The verification method of determining performance (a) by examination of the baseline,

(b) by performing calculations based on the baseline and assessing the results, (c) by
extrapolating or interpolating empirical data of collected using physical items prepared
according to the baseline, or (d) by a combination of all of the above.

Software practitioner
• The verification of software properties through the use of behavioral or structural

information from the software, e.g. the state space of a program, its patterns of
execution, an abstract model, etc.; in contrast to the computed values used in testing

• There are two types of software analysis: Dynamic and static

Uses
• Verifies non-local consistency. Path checking. Non deterministic choices such as race

conditions

Examples
• Security vulnerabilities, memory leaks, non-compliances
• Resource usage

2011 (c) Eduardo Miranda

2011 (c) Eduardo Miranda

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Verifying Quality Characteristics: Demonstration

INCOSE
• The verification method of determining performance by exercising or

operating the item in which instrumentation or special test equipment is not
required beyond that inherent to the item and all data required for verification
is obtained by observing operation of the item.

Practitioner
• Demonstration is the actual operation of an item to provide evidence that it

accomplishes the required functions under specific scenarios

Uses
• Mostly user acceptance and obtaining feedback through the development

process

Examples
• You walk the user through the different usage scenarios and verify that the

different screens are shown in a display
• You power on the equipment and observe whether a light comes on or not

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Relevance

Inspections
Testing

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Inspections
The scrutiny by people other than the producer, of
human oriented development artifacts with the aim
of meeting contractual obligations, finding non-
compliances with standards or uncovering defects
based on the premise that individuals might be blind
to some of the trouble spots in their own work and in
consequence it is beneficial to have someone else
look at it

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Benefits of Inspections

Inspections reduce the number of defects in the software throughout the
development process.

• Hewlett-Packard, ROI 10 to 1. Savings estimated at $21.4 million per
year. [1]

• AT&T Bell, ten-fold improvement in quality and a 14 percent increase
in productivity at Laboratories [2]

• Bell Northern Research, average savings of 33 hours of maintenance
effort per defect discovered [3]

They uncover defects that would be difficult or impossible to discover by
means of testing.
Inspections improve learning and communication within the software team.

[1] Grady, Robert B., and Tom Van Slack. “Key Lessons in Achieving Widespread Inspection Use,” IEEE Software, Vol. 11, No.
4 (July 1994), pp. 46-57.
[2] Humphrey, Watts S. Managing the Software Process. Reading, Massachusetts: Addison-Wesley, 1989
[3] Russell, Glen W. “Experience with Inspection in Ultra large-Scale Developments,” IEEE Software, Vol. 8, No. 1 (January
1991), pp. 25-31.

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Family of Inspection Techniques

Adapted from K. Wiegers, Peer Reviews in Software: A Practical Guide, 2002

Walkthrough: A technique in which a designer or programmer
leads members of the development team and other interested
parties through a software product, and the participants ask
questions and make comments about possible errors, violation
of development standards, and other problems

Review: A process or meeting during which a software product
is presented to project personnel, managers, users, customers,
user representatives, or other interested parties for comment or
approval

A technique with well defined entry and exit conditions, where somebody
other than the author of the artifact presents it to the participants. There
are many types of inspections: Fagan’s, N-fold, Phased, Gilb’s

Fagan
inspections

Team
review Walkthrough

Peer desk
check

Ad hoc
review

Most
formal

Least
formal

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Best Practices -1

Presentation made by somebody other than the author
• Forces another person to seriously read the work
• It exposes conflicts of understanding between what the author

intended to express and what others interpreted
Participants & duration

• The author, the presenter, a facilitator, a reviewer
• Never more than 2 hours
• Exclude:

- Anyone with known personality clashes with other reviewers
- Anyone who is not qualified to contribute
- Direct management

S. Rakitin, Software Verification and Validation A Practitioner’s Guide, 1997

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Best Practices -2

Preparation: Independent review of materials
• Material is independently reviewed by the presenter and the reviewer.
• Use checklists to highlight know trouble spots.

During the inspection
• Review the product, not its author.
• Identify problems but don’t try to solve them.
• Take notes.
• Before ending the inspection meeting summarize the issues to be

resolved and review how the meeting itself went.
Make it fun

• Avoid presenting the material word by word.
• Avoid showing off how much smarter you are.
• Always remember: An examination of your work is coming next.

S. Rakitin, Software Verification and Validation A Practitioner’s Guide, 1997

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing
The, more or less, thorough execution of the
software with the purpose of finding bugs
before the software is released for use and
to establish confidence that the software
performs as expected

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What things do we want to test?

Functions. See that each function does what it’s supposed to do
and does not, what it isn’t.

Scenarios. Imagine use situations. Do one thing after another. Do
not reset the system from test to test

Efficiency. Does the system provide appropriate performance,
relative to the amount of resources used, under stated conditions

Robustness testing. Imagine calamities. The possibilities are
endless. How does the system react to them?

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing Is Performed for Different Units of Analysis

Unit
testing

Integration
testing

System
testing

Acceptance
testing

Regression
testing

Modification to
existing software

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Functional Testing Paradigms

Partition testing
• Equivalence classes
• Boundary value analysis
• Basis paths testing

Random testing
• Random testing
• Fuzz testing

Exploratory testing
• Ad-hoc
• Session base testing

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Partition Testing

A partition is the division of the input domain of the software under
test into a number of subsets for which the behavior is assumed to
be the same for all values belonging to each of them.
The partition criteria utilized is what differentiates one test design
technique from another.

All values in a partition either result in a failure or produce a correct result.

Any red results in
“red behavior”

Any green results in
“green behavior”

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Random Testing

The systematic variation
of values through the
input space with the
purpose of identifying
abnormal output patterns

• When such patterns
are identified a root
cause analysis is
conducted to identify
the source of the
problem.

• In this case the “state
3” outputs seem to be
missing.

When Only Random Testing Will Do Dick Hamlet, 2006

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Exploratory (ad-hoc) Testing

Testing is performed on the fly, based on the skill and experience of
the testers.
Useful for:

• Testing if few system specifications are available, but
knowledge of the application and the anticipated goal is

• As a supplement to the “scripted” test design techniques
Limitations

• Poor exploration may result in a false sense of coverage and
effectiveness.

• Lack of repeatability. There is no guarantee that a particular
function will be tested in the same way by a different tester.

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Faults & Failures

Fault
• An incorrect step, process, data definition or the lack of it in a

computer program
• A latent fault is a fault that so far has not been discovered

because the program was not executed with the data that
triggers it.

• There are two types of faults:
- Faults of omission
- Faults of commission

Failure
• The inability of a software or software component to perform its

required functions within specified performance requirements
• The manifestation of a fault

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Faults of Omission

Specified behavior that for some
reason is not present in the
software, e.g. the programmer
forgot to program it in

• Initializations
• Validations
• Handling of special cases

They make for 22 to 54% of the
total number of faults [1]

[1] B. Marick, Faults of Omission, 2000

Should have been programmed but they weren’t

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Computation and Domain Faults

F1

F2

Specified behavior Programmed behavior

Computation fault

F3

y1

y2

y3

x1 x2 x3

F1

F2 contains one
or more faults

F3

x1 x2 x3

F1

F3

F2

x1 x2 x3

Domain fault

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Some Testing Techniques Are Better at
Discovering Some Problems than Others

F1

F2

Specified behavior Programmed behavior
Computation fault

F3

y1

y2

y3

x1 x2 x3

F1

F2 contains one
or more faults

F3

x1 x2 x3

F1

F3

F2

x1 x2 x3

Domain fault

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Boundary Value Analysis Technique

F1

F2

Specified behavior Programmed behavior
Computation fault

F3

y1

y2

y3

x1 x2 x3

F1

F2 contains one
or more faults

F3

x1 x2 x3

F1

F3

F2

x1 x2 x3

Domain fault
x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y

x, y Test passes

Test fails
It depends

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Triggers a Failure

Account
> 0

balance
<= 0

Account
> 0

balance
<= 0

Overdraft Yes

protection No

Account
> 0

balance
<= 0

Overdraft Yes

protection No

< 100

Check amount
>= 100

If AccountBalance < 0
then !##$!!!

The values of a single
variable

A combination of
values of two variables

A combination of values of
many variables

If AccountBalance < 0
and OverdraftProtection

then !##$!!!

If AccountBalance < 0 and
OverdraftProtection and Check
Amount >= 100 then !##$!!!

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing All Single Values

Account
>= 0

balance
< 0

Account
>= 0

balance
< 0

Overdraft Yes

protection No

Account
>= 0

balance
< 0

Overdraft Yes

protection No

< 100

Check amount
>= 100

If AccountBalance <
0 then !##$!!!

If AccountBalance
< 0 and

OverdraftProtectio
n then !##$!!!

If AccountBalance < 0 and
OverdraftProtection and Check
Amount >= 100 then !##$!!!

1

1 1

1

1

1

1

1

1

1 1

1

1

1 Test passes
Test fails

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Account
>= 0

balance
< 0

Overdraft Yes

protection No
2 2

To uncover interaction problems we need to
systematically test for them. All pairs, …

Account
>= 0

balance
< 0

Account
>= 0

balance
< 0

Overdraft Yes

protection No

> 100

Check amount
>= 100

If AccountBalance
< 0 then !##$!!!

If AccountBalance
< 0 and

OverdraftProtection
then !##$!!!

If AccountBalance < 0 and
OverdraftProtection and

Check Amount >= 100 then
!##$!!!

22

2

2
21

2

2 Test passes
Test fails

2

2
2

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

…all triples …

If Account_Balance < 0 and OverdraftProtection and Check Amount >= 100 then !##$!!!

Test Case Account
balance

Overdraft
protection

Check
amount Result

1 < 0 Yes >= 100 Fails

2 < 0 Yes < 100 Passes

3 < 0 No >= 100 Passes

4 < 0 No < 100 Passes

5 >= 0 Yes >= 100 Passes

6 >= 0 Yes < 100 Passes

7 >= 0 No >= 100 Passes

8 >= 0 No < 100 Passes

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Do we need to test for all combinations of values?

Combinatorial testing is
based on empirical findings,
there is no underlying
“software physics”. So while
testing for 4 or 5 interactions
is economically effective,
and probably more thorough
than what many
organizations do today,
there is no guarantee that it
will find all faults.

Practical Combinatorial Testing:
Beyond Pairwise, R. Kuhn, Yu Lei, R.
Kacker, 2008

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Hypothesis About What Causes Fault
Interaction Distribution

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 11 16 21 36 76

number of conditions per boolean expression

Boolean Expression Profile for 5 Airborne Systems

NASA Practical Tutorial on Modified Condition/Decision Coverage, 2001

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing Techniques According to the Source of
Information for Generating Test Cases

Black box (aka specification based testing and functional testing)
• Based on the input domain/expected behavior/specifications

and knowledge of how software might fail
• Examples: Boundary value analysis, combinatorial testing,

decision tables
White box (aka structural testing)

• Based on the structure of the software
• Examples: All basis paths, All definitions and use of a variable

37Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Black Box Testing: Looking at the Specification and
at Our Knowledge of How Software Might Fail

Identify the software under test.
• Things that the product can do (functions and sub functions).

Identify relevant test aspects.
• Values and other attributes of the data
• Execution conditions

Design test cases.
• Decide which particular data to test with. Consider things like

boundary values, typical values, convenient values, invalid
values, or best representatives.

• Consider combinations of data worth testing together.

Determine how you would know if a function is working
(expected test result).
Test each function, one at a time. See that each function:

• Does what it’s supposed to do; and
• Does not do what it isn’t supposed.

Specification

38Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Verify that all tests are passed and:
All the code statements have been
executed (statement coverage)

Both branches of each condition have
been executed (branch coverage)

All paths (impossible in most but the
simplest situations) have been traversed
(path coverage)

The fact that all statements and all
branches have been executed does not
guarantee that the software is fault free
since the coverage criteria can be met
and still there might be some faults that
were not triggered by the data.

White Box Testing: Looking at the Code

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√ Not verified

39Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

White or black box testing? Both

Good for identifying incorrect or
missing implementation of stated
requirements

Test cases can be written by
users and technologist alike

On its own, gives no indication of
how thoroughly the program code
has been tested

Can be used to assess whether
any features in the requirements
remain untested

Test what is written, not what was
intended

Knowledge of the implementation helps
to include test cases that may not be
identified from specifications alone

Good for discovering additional, perhaps
unwanted, functionality, e.g. intrusive or
unreachable code

Can be used to assess precisely what
code features remain untested

On its own, gives no indication of how
thoroughly the stated requirements have
been tested

White box testing Black box testing

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 40

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 23:
Specific Techniques
(Developed by Eduardo Miranda)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

Equivalence Classes
Testing Methods
Code Coverage
Advanced Testing Techniques

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Equivalence Classes

Based on the specification or some other
information it is possible to hypothesize that
the input domain is made up of a number of
partitions (e.g.: P1, P2 and P3) →

1. Values from the same partition exhibit the
same behavior not the same result (e.g.,
they are calculated using the same
procedure).

2. Values from different partitions exhibit
different behavior.

Two situations
• The members of the partition are defined by

enumeration.
• The partition can be defined by

comprehension (intention, formula).

P1

P2
x1

y1

x2

y2

P3
x3

y3

w1

z3

v3

w3

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 1: Membership to an Equivalence Class Is
Defined by Enumeration

Once the equivalence classes have
been identified, create two test
cases (if possible) for each
equivalence class.

• If any or both test cases do not
result in the expected values
you can discard the
equivalence hypothesis.

• Additional test cases for each
equivalence class may give us
more confidence, but the best
we can hope for, without testing
all members, is to disprove the
equivalence hypothesis.

P1
P2

P3

x1

y1
x3

x2

y2 y3

P1

P2
x1

y1

x2

y2

P3
x3

y3

w1

z3

v3

w3

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case 2: Membership to the Equivalence Class is
Defined by Intension: Boundary Value Analysis

• Test cases identified for
single-variable, single-
range closed interval.
Shaded area indicates
valid values of the
variable (L ≤ X ≤ R)

• Test cases for single
variable, single-range,
open interval (L < X < R)

• Single-Variable, with two
equivalence classes.
Notice that adjacent
classes do not overlap.
If the upper bound of
one is closed the lower
bound of the other is
open or vice versa (L1 ≤
X1 < R1, L2 ≤ X2 < R2)

L+ nominal R-

L R

L-

nominal R

R+

L

L1-

L1

nominal1

R1-
L2

R2

nominal2

R2-

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Applying Equivalence Class Testing to Factors
Other Than the Value of a Variable

The use of equivalence classes is not restricted to the values of a
variable, it can also be applied to other attributes such as the
length of a string, the number of occurrences of an element, etc.
It is a well known fact that many software faults are caused by the
treatment of “special” cases such as (notice that these are not
invalid data):

• Null entries
• Entries with maximum lengths
• Whether a character string contains spaces or not
• Whether the treatment a particular piece of data is the same

irrespective of
- Its order in a sequence
- Whether it occurs once or more

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How many test cases do we need in order to be
reasonably reassured that we have done a
comprehensive testing job?

• If we wanted to test all
possible combinations of
the 34 switches in the panel
we would need 234 = 1.7 x
1010 test cases.

• What if we suspected that all
faults involved only 3-way
interactions among the 34
switches? In this case we
could do it with only 33 tests.

• What if we were 99% certain
that all faults involved at
most 4 interactions? In this
case we could do the job
with only 85 tests.Adapted from Combinatorial Methods for Cybersecurity Testing,Rick Kuhn and

Raghu Kacker, National Institute of Standards and Technology, 2009

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Combinatorial Testing Defined

A technique that seeks to test all m combinations of a set of n >= m
variables while minimizing the number of test cases by employing
clever algorithms that package multiple unique combinations into
each test case
Very useful in detecting faults involving the interaction of many
independent variables

All but the simplest cases require the use of a computerized tool to
efficiently generate the test cases.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How does it work? All Triples, 10 Parameters
Example

Adapted from Combinatorial Methods
for Cybersecurity Testing,Rick Kuhn and
Raghu Kacker, National Institute of
Standards and Technology, 2009

3) In general the number of test cases needed to test all t-interactions of k variables with v values each is proportional to
⌈ ⌉𝑣𝑣𝑡𝑡 ln 𝑘𝑘 or to 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚 × 𝑣𝑣2𝑛𝑛𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚 × ⋯× 𝑣𝑣𝑡𝑡−𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚 × ln 𝑘𝑘

1) Each variable to test becomes a column in a
covering array

2) The generation algorithm searches, for
each row of the array, the configuration of
values that cover most combinations until
all of them have been covered

11Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Combinatorial Generation Examples

4 way interaction test suite 2 way interaction test suite

Test suites generated using the ACTS tool developed by NIST

12Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Combinatorial Testing Process

1. Individually verify the equivalence of each value to be used in in
this process.

2. Choose the strength of the interaction to be tested (all pairs, all
triples, etc).
• In general avoid mixing negative and positive testing.
• Do not test interactions among invalid values.

3. Generate test cases.
4. Complete test suite.

• Add missing cases.
• Remove impossible combinations.

5. Run and verify results.

13Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decision Tables

Conditions (Inputs) Rule 1 Rule 2 Rule 3 Rule 4 Rule 5
Requested amount <= Balance No Yes Yes Yes Yes
Requested amount divisible by 20 * No Yes Yes Yes

Number of withdrawals * * <= Free
limit

<= Paid
limit

> Paid
limit

Actions (Expected results)
Approve withdraw X X
Insufficient funds message X
Not multiple of 20 message X
Charge withdrawal fee X
Number of withdrawals over daily
limit message X

ATM withdraw decision logic

* Don’t matter value

14Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Decision Tables Partition the Input Domain from an
Output Perspective

All inputs resulting in the
“Insufficient funds” message

All inputs resulting in a “Not
multiple of 20” message

All inputs resulting in the
“Number of withdrawals over

daily limit” message
All inputs

resulting in a
no charge
withdrawal
approval

All inputs
resulting in a
withdrawal

approval with a
fee

15Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

When to Use Decision Tables

There are important logical relationships among input variables, i.e.,
the choosing of one value in one variable constrains the relevant
values other variables might assume.
There are calculations involving subsets of input variables.
Actions are unequivocal.

• The order in which the conditions are evaluated do not affect
the interpretation of the rules.

• The order of rule evaluation has no effect on which actions are
selected.

• Once a rule is satisfied and the action selected, no other rule
needs to be examined.

16Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

White Box Testing

Control flow
• McCabe’s Basis Path Testing
• Linear Code Sequences And

Jumps (LCSAJ)
Data flow

• Program slicing
Logic flow

• Unique cause approach

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

17Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Unique Cause Approach to Generate Test
Cases that Satisfy the Modified Condition Criteria
(MC)
The modified condition criteria originated in Boeing in 1994 and has
been adopted by the aerospace industry (DO-178B) as the
standard for coverage for high integrity systems.

MC criteria were developed with the purpose to achieve a degree of
confidence in the software comparable to that provided by
exhaustive testing, while requiring fewer test cases.

This is done by requiring the verification that each condition
independently affects the outcome of a decision, i.e., one must
demonstrate that the outcome of a decision changes as a result of
changing the true values of a single condition.

This test is of special relevance to the testing of clinical remainders.
Applicability of modified condition decision coverage to software testing, J. Chilenski and S. Miller, 1994

18Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Purpose of MC Is to Achieve a Degree of Confidence in
the Software Comparable to that Provided by Exhaustive
Testing, While Requiring Fewer Test Cases

A B C A & B & C

T T T T

F T T F

T F T F

T T F F

F F T F

F T F F

T F F F

F F F F
Notice that the shaded cases

do not contribute any new
information since as soon as

one condition is false the value
of the others do not matter

Exhaustive test
cases for an “AND”
decision

A B C A & B & C

T T T T

F T T F

T F T F

T T F F

Modified condition test
cases for the same
decision

The test cases demonstrates
that the individual changes of

each condition affect the
outcome of the decision

A B C A | B | C

F F F F

T F F T

F T F T

F F T T

F T T T

T F T T

T T F T

T T T T

A B C A | B | C

F F F F

T F F T

F T F T

F F T T

Exhaustive test
cases for an “OR”
decision*

Modified condition
test cases for the
same decision

* The symbol “|” is used to represent the “Or” operator

19Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

(A or B) and (C or D)

* Notice that the solution is not unique. The same condition
could have been tested by selecting rows 7 and 15

A B C D Decision
1 F F F F F
2 F F F T F
3 F F T F F
4 F F T T F
5 F T F F F
6 T F F F F
7 T T F F F
8 F T F T T
9 F T T F T

10 F T T T T
11 T F F T T
12 T F T F T
13 T F T T T
14 T T F T T
15 T T T F T
16 T T T T T

Condition Test cases
required

A 2 11
B 2 8
C* 6 12
D 6 11

Test suite 2, 6, 8, 11, 12

A more complicated example

20Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Based Exploratory Testing

Time-boxed sessions
• Periods of two hours to one day at the end of which testing is

considered done unless explicitly extended
Charters

• A clear mission for the session which suggests what should be
tested, how it should be tested, and what problems to look for

• Things that should not be tested at this time, for example,
because a separate charter was defined for these items

Debriefing
• How did you spend your time?
• Did you need special knowledge?
• Do you think there’s more to do?

21Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Code Coverage
Coverage is a measure of the extent to which a
given verification activity has achieved its objectives.
It is calculated by dividing the measured items:
statements, branches, conditions, etc., executed or
evaluated at least once by their total number.

Appropriate coverage measures give the people
doing, managing, and auditing verification activities a
sense of the adequacy of the verification
accomplished

22Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What situations do not give us a reasonable
reassurance that we have done a comprehensive
testing job?
After executing the software with our test suite we find that:

• Only 50% of the code statements were covered
• 90% of all statements were executed, but only 60% of the

conditional ones were thoroughly (true and false values)
evaluated

• 80% of the conditional statements were thoroughly evaluated,
but only 40% of the conditions that made then up were shown
to influence a result

23Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Salutation Program*

1. get (name, title, gender, maritalStatus)

2. if title <> “” then

3. salutation = title

4. else

5. if gender == “M” then

6. salutation = “Mr.”

7. endif

8. if gender == “F” && maritalStatus = “S” then

9. salutation = “Ms.”

10. else

11. salutation = “Mrs.”

12. endif

13. endif

14. print (salutation, name)

Code statistics

14 statements [1-14]

3 conditional statements
[2, 5, 8]

Number of simple
conditions affecting the
outcome of a conditional
statement [2, 5, 8, 8]

* There is a deliberate fault in the logic implemented

24Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing the Salutation Program
1. get (name, title, gender, maritalStatus)

2. if title <> “” then

3. salutation = title

4. else

5. if gender == “M” then

6. salutation = “Mr.”

7. endif

8. if gender == “F” && maritalStatus = “S” then

9. salutation = “Ms.”

10. else

11. salutation = “Mrs.”

12. endif

13. endif

14. print (salutation, name)

Test case 1
• (John, Dr., M, M)
• Expected result = “Dr. John”

Test Case 2
• (Mary, ,F, S)
• Expected result= “Ms. Mary”

Test Case 3
• (Laura, , F, M)
• Expected result= “Mrs. Laura”

25Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Test Case Adequacy Measures
Test case Counts from execution Test

result
Statistics

(John, Dr., M, M)
Expected result =
“Dr. John”

Stmts. = 5 (1, 2, 3, 13, 14) “Dr. John” Statement coverage = 5 / 14 = 35.7%

Cond. = 1 (2) Branch coverage = 1 / 6 = 16.6%

Branches =1 (3) Modified condition coverage = 0 / 4 = 0%
Simple cond. = 0

(Mary, ,F, S)
Expected result=
“Ms. Mary”

Stmts. = 10 (1, 2, 4, 5, 7, 8, 9, 12, 13, 14) “Ms. Mary” Statement coverage = 10 / 14 = 71.4%

Cond. = 3 (2, 5, 8)
Branch coverage = 3 / 6 = 50%

Branches = 3 (4, 7, 9)

Simple cond. = 0 Modified condition coverage = 0 / 4 = 0%

(Laura, , F, M)
Expected result=
“Mrs. Laura”

Stmts. = 11 (1, 2, 4, 5, 7, 8, 10, 11, 12, 13, 14) “Mrs.
Laura”

Statement coverage = 11 / 14 = 78.5%

Cond. = 3 (2, 5, 8)
Branch coverage = 3 / 6 = 50%

Branches = 3 (4, 7, 10)
Modified condition coverage 0 / 4 = 0%

Simple cond. = 0

Totals for the 3
tests

Stmts. = 13 (1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13,
14)

Statement coverage = 13 / 14 = 92.8%

Branch coverage = 5 / 6 = 83.3%
Cond. = 3 (2, 5, 8)

Modified condition coverage =
2 / 4 = 50%Branches =5 (3, 4, 7, 9, 10)

Simple cond. = 2 (2 - Title, 8 – maritalStatus)

26Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

100% Coverage Does Not Imply All Faults Have
Been Exposed

If A or B then

Z = Z + 1

else

Z = Z + 2

endif

If A and B then

Z = Z + 1

else

Z = Z + 2

endif

Test suite
• A = True, B = True
• A = False, B = False

100% branch coverage without
exposing the fault

Intended behavior Programmed behavior

27Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Meaning of Coverage

Coverage directly measures the thoroughness of the test and only
indirectly the quality of the software.
It must be emphasized that having 100% Statement Coverage or
any other coverage metric does not guarantee that the code is
100% fault free.

28Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary

Applicability What does it
test?

Able to
detect
faults of
omission

Type of
data

Targets faults
caused by (may
uncover other
problems)

Relations between
variables

Inspections Source code
and
documents

Functional and
non-functional
requirements

Yes Any Any

Equivalence
classes

Executable
software

Functional
requirements

Yes Not
ordered /
Logical

A single variable

Boundary
value analysis

Executable
software

Functional
requirements

Yes Ordered A single variable

Combinatorial
testing

Executable
software

Functional
requirements

Yes Any.
Mostly
valid data.
Nominal
values

Interactions
among variables

Better suited for
situations were each
variable takes its values
independent of others

Decision tables Executable
software

Functional
requirements

Yes Any Interactions
among variables

The value of one
variable defines the
possible values other
variables may take

Modified
condition

Executable
software

Functional
requirements

No Logical Compound
logical predicates

29Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Advanced Testing Techuiques

30Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Developing Test Cases From Decision Tables

1. List all inputs and expected results.

2. Calculate the number of rules.

3. Fill columns with all possible combinations.

4. Specify expected outputs for each combination.

5. Reduce test combinations by identifying common actions.

6. Check covered combinations.

7. Develop test cases.

31Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 1: List All Inputs and Expected Results

Conditions (Inputs) Values
Requested amount <=
Balance Yes, No (2)

Requested amount divisible
by 20 Yes, No (2)

Number of withdrawals <= Free limit, <= Paid
limit, > Paid limit (3)

Actions (Expected results)

Approve withdraw

Insufficient funds message

Not multiple of 20 message

Charge withdrawal fee

Number of withdrawals over
daily limit message

Hints
• List each condition

starting with the
most dominant and
putting the one with
most values last.

• Each condition
corresponds to a
variable, relation or
predicate.

• Write down
representative
values for each
equivalence class
the input variable or
condition can
assume.

32Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 2: Calculate the Number of Rules Required

Conditions (Inputs) Values R1 … R12

Requested amount <=
Balance Yes, No (2)

Requested amount divisible
by 20 Yes, No (2)

Number of withdrawals
<= Free limit, <=
Paid limit, > Paid
limit (3)

Actions (Expected results)

Approve withdraw

Insufficient funds message

Not multiple of 20 message

Charge withdrawal fee

Number of withdrawals over
daily limit message

Hints
• A raw decision table

will have as many
rules as the product
of the values of
each condition.

• In this example 2 x
2 x 3 = 12 rules.

33Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 3: Fill Columns With All Possible Combinations

Conditions (Inputs) Values R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

Requested amount <=
Balance Yes, No (2) No No No No No No Yes Yes Yes Yes Yes Yes

Requested amount
divisible by 20 Yes, No (2) No No No Yes Yes Yes No No No Yes Yes Yes

Number of withdrawals

<= Free limit,
<= Paid limit,
> Paid limit
(3)

<=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

Actions (Expected results)

Hints
• Write down each value of each condition in repeating sequences of

length k = combinations left / by the number of values of the row’s input.
• In this example:

1st row, k=12/2 = 6; 2nd row, k=6/2= 3, 3rd row, k=3/3=1

34Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 4: Specify Expected Outputs for Each
Combination

Conditions (Inputs) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

Requested amount <= Balance No No No No No No Yes Yes Yes Yes Yes Yes
Requested amount divisible by
20 No No No Yes Yes Yes No No No Yes Yes Yes

Number of withdrawals <=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

Actions (Expected results)
Approve withdraw X X
Insufficient funds message X X X X X X
Not multiple of 20 message X X X
Charge withdrawal fee X
Number of withdrawals over
daily limit message X

Hints
• Verify that there are no unmarked action rows (no rule triggers the associated action).
• Verify that the are no unmarked action columns (the rule does not trigger any action).

35Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 5: Reduce Test Combinations by Identifying
Common Actions

Conditions (Inputs) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

Requested amount <= Balance No No No No No No Yes Yes Yes Yes Yes Yes
Requested amount divisible by
20 No No No Yes Yes Yes No No No Yes Yes Yes

Number of withdrawals <=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

<=
FL

<=
PL

>
PL

Actions (Expected results)
Approve withdraw X X
Insufficient funds message X X X X X X
Not multiple of 20 message X X X
Charge withdrawal fee X
Number of withdrawals over
daily limit message X

Hint
• The “Insufficient funds” message is not influenced by the divisibility of the amount by 20 nor

by the number of withdrawals. R1 to R6 can be consolidated into a single rule with “don’t
matter values”.

36Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 6: Check Covered Combinations

Conditions (Inputs) Values R1 R2 R3 R4 R5

Requested amount <= Balance Yes, No (2) No Yes Yes Yes Yes

Requested amount divisible by
20 Yes, No (2) * No Yes Yes Yes

Number of withdrawals <= FL, <=
PL, > PL (3) * * <=

FL
<=
PL

>
PL

Actions (Expected results)

Approve withdraw X X

Insufficient funds message X

Not multiple of 20 message X

Charge withdrawal fee X

Number of withdrawals over
daily limit message X

Check sum 12 = 6 + 3 + 1 + 1 + 1

Hints
• For each column

calculate the
number of
combinations it
represents.

• An “ *” stands for
as many
combinations as
values the input
has.

• The total number
of combinations for
each column is
either 1 or the
product of the “*”
rows in it.

• Add up the total for
each row and and
compare with the
result of step 2. It
must be equal.

37Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Step 7: Develop Test Cases

Create a test case for each rule.
Develop test cases covering each value in the “don’t matter
conditions” to verify that they really don’t matter.
Example to test Rule 1

Test case

Requested
Amount <=
Balance

Requested
amount divisible
by 20

Daily
withdrawals

1 No Yes <= Free Limit
2 No No <= Paid Limit
3 No * > Paid Limit

38Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process to Generate Test Suites Satisfying the
Modified Condition Criteria -1

1. Breakdown the compound decision into its elementary
conditions and label them A, B, C, etc.

2. Create a truth table for the decision.

3. Select the test cases that uniquely affect the outcome. There
will be at least the number of elementary conditions + 1 test
cases.

39Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process to Generate Test Suites Satisfying the
Modified Condition Criteria -2

4. Transform the true and false value of each condition in actual
values to be used in the tests. Example:
• Condition A is BloodPressure <= 140 mmHg
• A = True will translate into a test case with a value of

BloodPressure <= 140, e.g. 130 mmHg
• A = False will translate into a test case with BloodPressure >

140, e.g. 150 mmHg
5. Assemble the selected test cases using the actual values.

40Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example Approach

(A or B) and (C or D)

* Notice that the solution is not unique. The same condition
could have been tested by selecting rows 7 and 15

Steps 2 & 3: Creating
the truth table and
selecting test cases

A B C D Decision
1 F F F F F
2 F F F T F
3 F F T F F
4 F F T T F
5 F T F F F
6 T F F F F
7 T T F F F
8 F T F T T
9 F T T F T

10 F T T T T
11 T F F T T
12 T F T F T
13 T F T T T
14 T T F T T
15 T T T F T
16 T T T T T

Condition Test cases
required

A 2 11

B 2 8

C* 6 12

D 6 11

Test suite 2, 6, 8, 11, 12

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 41

Questions?

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Module 24:
Continuous Integration and Testing
(Authored by Kevin Gary, Arizona State University)

Introduction to Assured Software Engineering

2Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Notices
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Independent Agency under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of Defense.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

3Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Topics

Traditional Testing Practices
Agile Testing Practices

4Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Traditional Testing Practices

Testing occurs once, near end of project
• Lots of lead time for test planning, test case generation, test lab

and infrastructure setup
Test cases don’t change (or don’t change often)

• Cost of creating is paid once, not continuously
• Few changes to system once it is specified and designed

Tests executed periodically
• Initially to ensure system meets

requirements
• Regression testing after significant

change to ensure nothing broke

5Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Development Process Is Continuous
No separate “test” phase – integrate and test continuously
Features change during release – testing must adapt
Testing starts on project’s Day 1

• Initial plans, strategies, infrastructure required very early

Iteration
Release 1.2

Team Builds

Release 1.1

…
Milestone

Iteration

…
Beta

…

Nightly builds
+ Adaptive planning
+ Continuous integration
= Testing nightmare

6Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Continuous Development => Test Automation

Continuous delivery and builds require automated testing
• Each build must be validated so future integrations build on a

known quantity.
Test frameworks provide infrastructure to quickly standup unit
testing.

• Governance and visibility – which test, on which build, metrics,
trends

Type of build What tests? Level of automation

Developer delivery to CM • “Unit” tests (per component) All automated

Team “nightly” builds • Add “Smoke test” for integration Most automated, limited manual

Iteration • Add quality tests for coverage, static
analysis, metrics, etc.

Quality numbers obtained automatically

Milestone iteration • Add additional scripts per test plan –
performance, scalability, stability, etc.

Mixed automation/manual, but as
automated as possible

7Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

An Example “Code Acceptance Process”

Static Verification Dynamic Verification

Chk
Stds

Stds
Report

Chk
Defects

Defects
Report

Chk
Complexity

Complexity
Report

Unit
Test
Code

Unit
Test

Design

Unit Test
Report

Create
Regression

Tests

Regression
Tests

Release
From

Coding
Phase

Write
Code

Code

Peer Reviews

8Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

XP Best Practices: Continuous Integration
What is Continuous Integration?

• Integrate & build the system several times a day
• Integrate every time a task is completed
• Let’s you know every day the status of the system

Continuous integration and relentless testing go hand-in-hand.
By keeping the system integrated at all times, you increase the
chance of catching defects early and improving the quality and
timeliness of your product.
Continuous integration helps everyone see what is going on in the
system at all times.
If testing is good, why not do it all the time? (continuous testing)
If integration is good, why not do it several times a day? (continuous integration)
If customer involvement is good, why not show the business value and quality
we are creating as we create it (continuous reporting)

9Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Agile Best Practice: Continuous Testing
Unit, System, and Integration tests can be run continuously!

• Requires test automation and reporting framework
• Post results to a dashboard for all to see

- Daily standup in the morning starts by checking if the dashboard is “green”.

Report on your static analysis / metrics while you’re at it!
Together with burndown charts, these show business value being built,
with an attention to quality, at a sustainable pace.

10Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Fowler’s 10 Best Practices for CI
From

http://martinfowler.com/articles/continuousIntegration.html:
1. Maintain a Single Source Repository
2. Automate the Build
3. Make your Build Self-testing
4. Everyone Commits Everyday
5. Every Commit should Build the Mainline on an

Integration Machine
6. Keep the Build Fast
7. Test in a Clone of the Production Environment
8. Make it easy for Anyone to get the Latest Executable
9. Everyone can see what’s Happening

10. Automate Deployment

http://martinfowler.com/articles/continuousIntegration.html

Introduction to Assured Software Engineering
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 11

Questions?

	Mod1_Intro-SW Lifecycle Models
	Module 1:�Introduction and Software Lifecycle Models
	Notices
	Outline
	Learning Outcomes
	Course Topics
	Prerequisites and Co-requisite
	Educational Activities
	Text(s) and Key References
	Grading Criteria
	Software Assurance Challenges
	Scenario – Drone Virus Attack
	Drone Scenario – Key Challenges
	Is There Really a COTS Security Problem?
	Discussion
	Current Challenge for Software Assurance
	Operational Mission Reality – Systems of Systems
	Discussion
	Definition: Software Assurance
	Foundations for Software Assurance
	Information/IT Security Point of View
	Software Security Point of View -1
	Software Security Point of View -2
	Why Software Security? -1
	Why Software Security? -2
	What Is Software Security?
	Security Perspectives
	Software Needs to Be Trusted
	Definition: Software Assurance (recap)
	Addressing the Gaps
	Software Assurance Guiding Principles
	Security Principles -1
	Security Principles -2
	Security Principles -3
	Technology Environment in 1974
	Changes Since 1974
	Principles of Software Assurance
	Risk
	Interactions
	Trusted Dependencies
	Attacker
	Coordination and Education
	Well-Planned and Dynamic
	Measurable
	Class Assignment One
	Questions?

	Mod2_SW Dev Lifecycles
	Module 2:�Software Development Lifecycles�(Developed by David Root)
	Notices
	Topics
	What Is a Software Lifecycle?
	What Is a Lifecycle?
	What Is a Software Lifecycle?�
	More on Lifecycles
	So…What Is a Process?�
	Process ≠ Lifecycle
	What Is Important?
	Sample Lifecycles
	Be Very Careful Here
	Remember This When Looking at SDLCs
	When Looking At Projects
	Criteria You Need to Consider
	Ad Hoc “Hobbyist”
	Waterfall Model -1
	Waterfall Model -2
	Waterfall (Linear) (Classic) Model Intent
	A Common Misuse of the Rapid Prototype Model
	What Are the Problems with the Prototype Lifecycle?
	Incremental Model�(One of the Most Misused Definitions)
	However, the incremental model is used…
	Incremental Model�(What Blocks Are Missing?)�
	Rapid Application Development (RAD)
	Spiral Model -1
	Spiral Model -2
	Spiral Model -3
	WINWIN Spiral
	V Model -1
	V Model -2
	Which of these do you use?
	Summary
	Other. . .
	Chaos Model -1
	Chaos Model -2
	Chaos Model -3
	Components
	SEI Process Models for COTS
	Concurrent
	Concurrent Development Model�
	Are These Different?
	Current State of the Art
	When Looking at a New Project
	Questions?

	Mod3_Project Processes
	Module 3:�Project Processes�(Developed by Dan Shoemaker) �
	Notices
	Project Planning Process – Purpose
	Project Planning Process – Results
	Project Planning Process – Project Initiation
	Project Planning Process – Project planning
	Project Planning Process – Project Activation
	Project Assessment and Control Process – Purpose
	Project Assessment and Control Process – Results
	Project Assessment and Control Process – Project Monitoring and Project Control
	Project Assessment and Control Process –�Project assessment and Project closure
	Decision Management Process
	Decision Management Process – Results
	Decision Management Process – Decision Planning�
	Decision Management Process – Decision Analysis�
	Decision Management Process – Decision Tracking
	Risk Management Process
	Risk Management Process – Results
	Risk Management Process – Risk Management Planning�
	Risk Management Process – Risk Analysis
	Risk Management Process – Risk Treatment�
	Risk Management Process – Risk Monitoring�
	Risk Management Process – Evaluation�
	Configuration Management Process – Purpose and Results
	Configuration Management Process – Planning and Execution
	Information Management Process
	Information Management Process – Results
	Information Management Process – Planning�
	Information Management Process – Execution
	Measurement Process
	Measurement Process – Results
	Measurement Process – Planning
	Measurement Process – Performance�
	Measurement Process – Evaluation
	Questions?

	Mod4_ Process Frameworks
	Module 4:�Process Frameworks�(Developed by David Root) �
	Notices
	Topics
	Discussion
	Defining Processes – A Review
	Don’t Make This Too Hard
	Be Very Careful
	Painful Experience
	Software Methodology Wars�Ken Orr/Cutter Consortium
	Review: Remember Process ≠ Lifecycle
	Process Definition
	What Is a Method?
	Our Philosophy
	Remember…
	Why Would I Want To Use an Established Process Framework?
	Process Myths and Abuses -1
	Process Myths and Abuses -2
	Process Myths and Abuses -3
	Process Myths and Abuses -4
	Process Myths and Abuses -5
	Sample Processes
	Process Spectrum
	As We Look at These, Ask Yourself…
	Questions?

	Mod5_PSP and TSP
	Module 5:�PSP and TSP�(Developed by Mel Rosso Llopart) �
	Notices
	Who Studies PSP
	PSP Framework
	Why PSP?
	What Is the Big PSP Strategy?
	PSP Concentrates on Metrics with Highest ROI
	What You Learn About PLANNING
	What You Learn About ESTIMATION
	To Summarize: PSP
	PSP Is a First Step to Improvement, but ...
	Team Software Process (TSP)
	Principal Concepts of TSP�
	TSP Cycle
	Step 0: Project Launch and Step 1: Develop a Strategy
	Step 2: Plan the Work
	Step 3: Review Cycle Requirements�
	Step 4: Design a Solution�
	Step 5: Implementation�
	Step 6: Testing�
	Step 7: Postmortem�
	Implementing TSP
	Each step of the process has
	Sample Form
	SAMPLE TIME RECORDING LOG INSTRUCTIONS
	TSP Roles
	Example of TSP Roles: Leader
	TSP Users
	PSP/TSP Reviewed
	Questions?

	Mod6_Arch-Cent Dev Mothod (ACDM)
	Module 6:�Architecture-Centric Development Method (ACDM)�(Developed by Dan Shoemaker) �
	Notices
	ACDM Architecture-Centric Development Method�http://reports-archive.adm.cs.cmu.edu/isri.html
	ACDM Stages -1
	ACDM Stages -2
	ACDM Strengths
	ACDM Weaknesses
	ACDM Centerpiece
	Summary
	Agile Processes�XP and Scrum�(Developed by David Root)
	Scott Adams, Inc. Dist. By UFS, INC.
	What Is Agile?
	Why Agile Processes?
	But, opponents say…
	One Data Point
	Agile Processes�From Agile Alliance
	Common Characteristics -1�From Agile Alliance
	Common Characteristics -2�From Agile Alliance
	Weaknesses
	More Weaknesses…
	Agile Users
	Minimal Research on Agile Methods … Why?
	eXtreme Programming
	Slide Number 24
	Four Values of XP�
	XP Practices
	Planning Game
	Test-Driven Development (TDD)
	Pair Programming
	XP Roles
	XP Workplaces
	Where It Seems to Work Best
	Scrum
	Meetings – Time Limited
	Artifacts
	Some criticisms of Agile
	SPAWAR Reference for Agile
	Questions?

	Mod7_RUP-AUP-OUP
	Module 7:�Rational, Agile, and Open Unified Processes (RUP, AUP, OUP)�(Developed by David Root) �
	Notices
	Topics
	Rational Unified Process
	The Process Outline - Phases Versus Iterations
	Characteristics
	RUP Modeling
	Planning
	RUP Roles (about 26 of them)
	 More Roles...
	RUP Review – Strengths
	RUP Review – Weaknesses
	RUP Centerpiece
	Agile Unified Process
	The Process Outline – Phases Versus Iterations
	Disciplines
	Open Unified Process
	 Open UP roles
	AUP and OUP Summary
	Summary
	Choosing. . .
	Common Errors in Choosing
	Let’s Compare!
	Comparative Matrix �Where would you put ACDM?
	Comparative Matrix with ACDM�
	Criteria…�You should be asking questions.
	Choosing Suitable SDLC
	Choose Your Weapon Wisely�Justin Rockwood 2003
	Example for Total Developers
	Example for Type of Product
	Add Up Scores
	Boehm and Turner: “Balancing Agility with Discipline,” 2004�
	Personnel Discriminator…
	And Then
	Recommendations
	Summary
	Summary
	Questions?

	Mod8_Software Assurance Lifecycle and Maturity Models
	Module 8:�Software Assurance Lifecycle and Maturity Models �
	Notices
	Outline
	Software Assurance Practices
	Security Perspectives
	So What Should We Do?
	Understand the Cost of Correcting Software Defects
	Example Security Practices -1
	Example Security Practices -2
	Software Assurance Lifecycle Models
	Enterprise Software Security Framework
	SDLC with Defined Security Touchpoints
	Microsoft’s Security Development Lifecycle
	Assurent Software Security Lifecycle
	Assess Security Risk Across the SDLC
	Discussion
	Attack Patterns
	Assurance Cases
	Misuse/Abuse Cases
	Architecture and Design
	Secure Code Review/Scanning
	Security Testing -1
	Security Testing -2
	Software Assurance Maturity Models and Frameworks
	Product Security Office: Delivers Product Security from Concept to Customer
	BSIMM8: The Building Security In Maturity Model
	Prescriptive vs. Descriptive Models
	BSIMM: Software Security Measurement
	A Software Security Framework
	109 Firms in BSIMM8 Community�
	Building BSIMM
	BSIMM8 Scorecard�
	BSIMM8 Scorecard (cont’d)�
	BSIMM8 as a Measuring Stick
	BSIMM8 as a Longitudinal Study
	BSIMM8
	An Assurance Ecosystem
	One View as to How the Pieces Fit
	EMC-Wide Standard with Focus on Risk and Organization Maturity
	Customers Buy with More Confidence:�Providers and Suppliers Can Extend Supply Chain Integrity
	Classifying Vulnerabilities: Some Useful Resources
	Questions?

	Mod9_OWASP CLASP Overview
	Module 9:�OWASP CLASP Overview�(Developed by Nick Coblentz) �
	Notices
	OWASP CLASP Presentation Outline
	What Is CLASP?
	What Is CLASP?
	CLASP Best Practices
	CLASP Best Practices
	CLASP Organization
	Bird’s-Eye View of CLASP Process
	Concepts View – CLASP Security Services
	Concepts View – Overview of Vulnerability View
	Role-Based View - Introduction
	Role-Based View – Project Manager
	Role-Based View – Requirements Specifier
	Role-Based View – Architect
	Role-Based View – Designer
	Role-Based View – Implementer
	Role-Based View – Test Analyst
	Role-Based View – Security Auditor
	Activity-Assessment View Overview
	Activity-Assessment and Roles
	Activity-Assessment Example Item
	Activity-Implementation View Introduction
	CLASP Roadmaps
	Resources
	Questions?

	Mod10_What are requirements
	Module 10:�What are Requirements?�(Authored by Kevin Gary, Arizona State University) �
	Notices
	Fred Brooks’ quote
	Definitions
	Non-functional Requirement Types
	User vs. System Requirements
	Requirements Examples
	Other Requirements Classifications
	Summary
	Requirements Checklist Example
	Requirements Elicitation
	Overview
	Requirements Elicitation
	Requirements Elicitation
	Information Sources
	Requirements Elicitation Techniques
	Interviews -1
	Interviews -2
	Group Meetings -1
	Group Meetings -2
	Storyboarding / Prototypes
	Storyboarding / Prototypes
	Questionnaires
	Questionnaires
	Perform Research
	Perform Research
	Observation
	Observation
	Observation
	Joint Application Design
	Joint Application Design
	Elicitation Issues
	Requirements Elicitation Summary
	Questions?

	Mod11_Requirements Analysis
	Module 11:�Requirements Analysis�(Authored by Thomas Hilburn, Embry-Riddle Aeronautical University) �
	Notices
	Topics
	Software Modeling Foundations -1
	Software Modeling Foundations -2
	Software Modeling Foundations -3
	Requirements Analysis
	Conceptual Model
	Requirements Analysis Process
	Analysis & Modeling Issues
	Analysis Models
	Context Diagram
	An Example Problem
	DigitalHome Context Diagram
	Requirements Modeling Principles
	Requirements Analysis Modeling
	Structural Analysis
	Data Flow Diagram
	Entity Relationship Diagram
	State Transition Diagram
	Structured Design
	Structure Chart
	Object-Oriented Analysis
	Unified Modeling Language (UML)
	Messages to Remember
	Questions?

	Mod12_Use Case Models
	Module 12:�Use Case Models�(Authored by Thomas Hilburn, Embry-Riddle Aeronautical University) �
	Notices
	Use Case Basics -1
	Use Case Basics -2
	Use Case Basics -3
	Use Case Basics -4
	Developing Use Case Model
	Use Case Diagram
	Use Case Name Format
	Goals and Actors
	Use Case Scenarios
	Use Case Template 1
	Use Case Template 2
	Use Case Template 3
	Use Case Description Example
	DigitialHome Use Case Diagram 1
	Use Case Associations
	DigitialHome Use Case Diagram 2
	DigitalHome Use Case Scenario
	Review of Use Case Model -1
	Review of Use Case Model -2
	Review of Use Case Model -3
	Problems with Use Cases -1
	Problems with Use Cases -2
	Use Cases and Requirements
	Messages to Remember
	Questions

	Mod13_SecReq and SQUARE Overview
	Module 13:�Security Requirements and SQUARE Overview
	Notices
	Outline
	Requirements Engineering
	Requirements Engineering Issues
	Requirements Problems
	Effects of Requirements Problems
	Discussion
	Security Requirements
	Security Requirements Engineering Issues – Example
	Microsoft Security Lifecycle Results
	Security Requirements Methods -1
	Security Requirements Methods -2
	SQUARE Methodology
	SQUARE
	SQUARE
	SQUARE Steps
	SQUARE Steps
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 7 – Categorize Requirements Examples
	Step 8
	Step 9
	Approach
	Traceability in the SQUARE Tool
	Summary
	Summary
	Additional Resources
	Additional Resources
	SQUARE Demo Video
	Questions?

	Mod14_Artifacts to support cybersecurity req
	Module 14:�Artifacts to Support Cybersecurity Requirements
	Notices
	Develop Artifacts�(corresponds to SQUARE Step 3)
	Develop Artifacts -1
	Develop Artifacts -2
	Develop Artifacts -3
	Questions?

	Mod15_SQUARE for Acquisition
	Module 15:�SQUARE for Acquisition�
	Notices
	Outline
	Background
	Background
	What Is Acquisition?
	The Need for SQUARE
	Recap of the SQUARE Process
	Introduction to A-SQUARE
	A-SQUARE: Three Cases
	Case 1
	A-SQUARE: Case 1 Introduction
	Case 1: Process Workflow
	Case 1: Important Points
	Case 1: Compressed Workflow
	Case 2
	A-SQUARE: Case 2 Introduction
	Case 2: Important Points
	Case 3
	A-SQUARE: Case 3 Introduction
	A-SQUARE: Case 3 Introduction
	Is There Really a COTS Security Problem?
	A-SQUARE Case 3 – Steps 1-4
	A-SQUARE Case 3 – Steps 5-7
	Case 3: Important Points
	Future Vision – A New Scenario
	Discussion
	Summary
	Summary and Further Work
	Additional Resources
	Additional Resources
	Questions?

	Mod16_Risk Analysis for Software Assurance - Part 1
	Module 16:�Risk Analysis for Software Assurance (Part 1)�(Developed by Christopher Alberts, SEI) �
	Notices
	Topics
	Risk Concepts
	Software Assurance1
	What Is Risk?
	Risk Management Activities
	Issue/Problem
	Opportunity
	Strength
	Causal Chain of Conditions and Events
	Two Approaches for Analyzing Risk
	Two Type of Risk Analysis
	Elements of Mission Risk
	Elements of Event Risk
	Security Engineering Risk Analysis (SERA) Concepts
	Current State: High Residual Security Risk
	Goal: Reduce Residual Security Risk
	Complex Nature of Security Risk
	Security Engineering Risk Analysis (SERA)
	SERA Method
	Establish Operational Context (Task 1)
	Task 1 Questions: Set Scope of Risk Analysis
	Task 1 Questions: Define Workflow/Mission Thread
	Example: Wireless Emergency Alerts (WEA) Service
	Example: Swimlane Diagram for the WEA Service
	Example: Mission Thread -1
	Example: Mission Thread -2
	Identify Risk (Task 2)
	Security Risk Components
	Task 2 Questions: Identify Threat
	Example: Threat
	Task 2 Question: Establish Consequence
	Example: Consequence
	Task 2 Question: Identify Enablers
	Example: Enablers -1
	Example: Enablers -2
	Task 2: Risk Statement
	Example: Risk Statement
	Example: Risk Scenario
	Questions?

	Mod17_Risk Analysis for Software Assurance - Part 2
	Module 17:�Risk Analysis for Software Asurance (Part 2)�(Developed by Christopher Alberts) �
	Notices
	Analyze Risk (Task 3)
	Task 3 Questions: Establish Probability
	Probability Criteria
	Example: Probability
	Task 3 Questions: Establish Impact
	Impact Criteria
	Example: Impact
	Task 3 Question: Determine Risk Exposure
	Risk Exposure Matrix
	Example: Risk Exposure
	Determine Control Approach (Task 4)
	Task 4 Question: Prioritize Risks
	Example: Prioritized Risk Spreadsheet
	Task 4 Questions: Select Control Approach
	Example: Control Approach
	Example: Risk Spreadsheet with Control Approach
	Develop Control Plan (Task 5)
	Task 5: Review Data
	Task 5 Questions: Establish Control Requirements -1
	Task 5 Questions: Establish Control Requirements -2
	Example: Mitigation Plan -1
	Example: Mitigation Plan -2
	Example: Mitigation Plan -3
	Example: Mitigation Plan -4
	Summary
	Key Points -1
	Key Points -2
	Publications and Resources -1
	Publications and Resources -2
	Questions?

	Mod18_Deisgn Patterns
	Module 18:�Design Patterns�(Authored by Kevin Gary, Arizona State University) �
	Notices
	Topics
	What Are Patterns?
	Patterns, Styles, Idioms and DSSAs -1
	Patterns, Styles, Idioms and DSSAs -2
	Patterns History
	A Simple Pattern Example
	Pattern Format (GoF format)
	Pattern Example: Adapter
	Pattern Types (from GOF)
	Creational Patterns: Abstract Factory
	Abstract Factory Example
	Creational Patterns: Singleton
	Behavioral: Observer Pattern
	Applying the Observer Pattern
	Java Support for Observers
	Behavioral Patterns: Strategy
	Strategy Pattern Example
	Strategy Pattern Example – Inheritance
	Strategy Pattern Example
	Structural Patterns: Decorator
	Decorator Example (Java Streams)
	Decorator Example (Java Streams)
	Pattern Systems
	Anti-Patterns
	Design Patterns Summary
	Design Patterns Wrap-up
	References and Interesting Reading
	Design Pattern: Builder
	Builder Example
	Design Pattern: Mediator
	Mediator Example
	Design Pattern: Composite
	Composite Design Pattern
	Composite Source Code
	Chain of Responsibility (CoR) Pattern
	Command Pattern
	CoR and Command Patterns
	Questions?

	Mod19_UML
	Module 19:�UML Overview�(Authored by Kevin Gary, Arizona State University) �
	Notices
	Topics
	Overview of Modeling
	Why Do We Model?
	UML (Unified Modeling Language)
	Why UML?
	UML Diagrams Support Multiple System Views
	Categories of UML Diagrams
	UML Activity Diagrams
	What Is an Activity Diagram?
	Example: Activity Diagram
	Activity Diagrams
	Activity Diagram
	Mapping Who Does What to Whom
	Example
	How do you derive Swimlanes?
	What Role Do Objects Play?
	Example: Activity Diagram w/ Objects
	Activity Diagram Summary
	Questions?

	Mod20_UML Statecharts
	Module 20:�Behavioral Modeling Using�UML State Machines�(Authored by Kevin Gary, Arizona State University) �
	Notices
	Topics
	Behavorial Modeling
	In-depth: The need for SMs
	What Are State Machine Diagrams?
	State Machine Example
	UML Statechart 1-slide cheatsheet
	State Machine Overview
	Anatomy a State
	Special States
	What Are Events?
	UML Event Types
	Event Examples
	What Are Transitions?
	What Are Guards/Actions/Activities?
	Internal versus External Transitions
	How All This Works
	Statechart Example 1
	Statechart Example 1 “strangeness”
	Statechart Example 2
	More SM Concepts
	Statechart Summary
	Statechart Tips
	Questions?

	Mod21_Inspections
	Module 21:�Inspections�(Developed by Mel Rosso-Llopart and Anthony Lattanze) �
	Notices
	Outline
	Software Work Product Inspections -1
	Software Work Product Inspections -2
	Software Work Product Inspections -3
	Benefits of Inspections -1
	Benefits of Inspections -2
	Benefits of Inspections -3
	The Cost of Inspections -1
	The Cost of Inspections -2
	Formal Inspection Process Roles
	Formal Inspection Process -1
	Formal Inspection Process -2
	Formal Inspection Process -3
	Formal Inspection Process – Hints for Success
	Guidelines for Informal Inspections
	Summary
	Discussion
	References
	Questions?

	Mod22_System Testing
	Module 22:�System Testing�(Developed by Eduardo Miranda) �
	Notices
	Topics
	Learning Objectives
	But just remember there's a lot of bad and beware “Oh, baby, baby, it's a wild world”
	Purpose of Software Verification
	Quality Characteristics & Verification Techniques
	Verifying Quality Characteristics: Inspection
	Verifying Quality Characteristics: Testing
	Verifying Quality Characteristics: Analysis
	Verifying Quality Characteristics: Demonstration
	Relevance
	Inspections
	Benefits of Inspections
	The Family of Inspection Techniques
	Best Practices -1
	Best Practices -2
	Testing
	What things do we want to test?
	Testing Is Performed for Different Units of Analysis
	Functional Testing Paradigms
	Partition Testing
	Random Testing
	Exploratory (ad-hoc) Testing
	Faults & Failures
	Faults of Omission
	Computation and Domain Faults
	Some Testing Techniques Are Better at Discovering Some Problems than Others
	Boundary Value Analysis Technique
	What Triggers a Failure
	Testing All Single Values
	To uncover interaction problems we need to systematically test for them. All pairs, …
	…all triples …
	Do we need to test for all combinations of values?
	A Hypothesis About What Causes Fault Interaction Distribution
	Testing Techniques According to the Source of Information for Generating Test Cases
	Black Box Testing: Looking at the Specification and at Our Knowledge of How Software Might Fail
	White Box Testing: Looking at the Code
	White or black box testing? Both
	Questions?

	Mod23_Specific Techniques
	Module 23:�Specific Techniques�(Developed by Eduardo Miranda) �
	Notices
	Topics
	Equivalence Classes
	Case 1: Membership to an Equivalence Class Is Defined by Enumeration
	Case 2: Membership to the Equivalence Class is Defined by Intension: Boundary Value Analysis
	Applying Equivalence Class Testing to Factors Other Than the Value of a Variable
	How many test cases do we need in order to be reasonably reassured that we have done a comprehensive testing job?
	Combinatorial Testing Defined
	How does it work? All Triples, 10 Parameters Example
	Combinatorial Generation Examples
	Combinatorial Testing Process
	Decision Tables
	Decision Tables Partition the Input Domain from an Output Perspective
	When to Use Decision Tables
	White Box Testing
	The Unique Cause Approach to Generate Test Cases that Satisfy the Modified Condition Criteria (MC)
	The Purpose of MC Is to Achieve a Degree of Confidence in the Software Comparable to that Provided by Exhaustive Testing, While Requiring Fewer Test Cases
	Slide Number 19
	Session Based Exploratory Testing
	Code Coverage
	What situations do not give us a reasonable reassurance that we have done a comprehensive testing job?
	The Salutation Program*
	Testing the Salutation Program
	Test Case Adequacy Measures
	100% Coverage Does Not Imply All Faults Have Been Exposed
	The Meaning of Coverage
	Summary
	Advanced Testing Techuiques
	Developing Test Cases From Decision Tables
	Step 1: List All Inputs and Expected Results
	Step 2: Calculate the Number of Rules Required
	Step 3: Fill Columns With All Possible Combinations
	Step 4: Specify Expected Outputs for Each Combination
	Step 5: Reduce Test Combinations by Identifying Common Actions
	Step 6: Check Covered Combinations
	Step 7: Develop Test Cases
	Process to Generate Test Suites Satisfying the Modified Condition Criteria -1
	Process to Generate Test Suites Satisfying the Modified Condition Criteria -2
	Example Approach
	Questions?

	Mod24_Continuous Integration-Testing
	Module 24:�Continuous Integration and Testing�(Authored by Kevin Gary, Arizona State University) �
	Notices
	Topics
	Traditional Testing Practices
	Development Process Is Continuous
	Continuous Development => Test Automation
	An Example “Code Acceptance Process”
	XP Best Practices: Continuous Integration
	Agile Best Practice: Continuous Testing
	Fowler’s 10 Best Practices for CI
	Questions?

